Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The design and development of efficient and durable catalysts with visible-light response for photocatalytic hydrogen production and pollutants degradation is considered as one of the most challenging tasks. In present work, a novel CuWS/NiTiO (abbreviated as × CWS/NTO; x = 0.25, 0.50, 0.75 and 1.00) composite was prepared via a facile electrospinning/calcination technique along with a convenient hydrothermal method. The as-prepared CWS/NTOcomposite was composed of 2D CWS nanosheets and 1D NTO nanofibers manifested by SEM and TEM images. The results of XPS verified the interfacial interaction between CWS and NTO, confirming the heterojunction formation in CWS/NTOcomposite. Photocatalytic tests demonstrated as-prepared CWS/NTO catalysts exhibited outstanding and stable photocatalytic performances for H production and pollutants degradation under visible light (λ > 420 nm) irradiation. Specially, 0.50 CWS/NTO sample displayed the highest H-evolution activity of 810 μmol·g·h with the apparent quantum efficiency (AQE) value of 1.65 % at 420 nm. Additionally, it also exhibited the optimal photodegradation properties with the rate constants of 0.030, 0.413 and 0.028 min for TC, RhB and Cr(VI), respectively. The excellent catalytic activities could be attributed to the enhanced visible-light adsorption, high specific surface area and efficient separation of photogenerated charge carriers. The ESR tests and free radicals capturing experiments confirmed that ·O and h were primary active species for TC/RhB degradation. Eventually, the probable catalytic mechanism was put forward and detailly analysed. The present work provides perspectives of rational design on NiTiO-based catalysts with superior photocatalytic performance for energy regeneration and environmental remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.10.179 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!