Background And Objectives: One principal impediment in the successful deployment of Artificial Intelligence (AI) based Computer-Aided Diagnosis (CAD) systems in everyday clinical workflows is their lack of transparent decision-making. Although commonly used eXplainable AI (XAI) methods provide insights into these largely opaque algorithms, such explanations are usually convoluted and not readily comprehensible. The explanation of decisions regarding the malignancy of skin lesions from dermoscopic images demands particular clarity, as the underlying medical problem definition is ambiguous in itself. This work presents ExAID (Explainable AI for Dermatology), a novel XAI framework for biomedical image analysis that provides multi-modal concept-based explanations, consisting of easy-to-understand textual explanations and visual maps, to justify the predictions.

Methods: Our framework relies on Concept Activation Vectors to map human-understandable concepts to those learned by an arbitrary Deep Learning (DL) based algorithm, and Concept Localisation Maps to highlight those concepts in the input space. This identification of relevant concepts is then used to construct fine-grained textual explanations supplemented by concept-wise location information to provide comprehensive and coherent multi-modal explanations. All decision-related information is presented in a diagnostic interface for use in clinical routines. Moreover, the framework includes an educational mode providing dataset-level explanation statistics as well as tools for data and model exploration to aid medical research and education processes.

Results: Through rigorous quantitative and qualitative evaluation of our framework on a range of publicly available dermoscopic image datasets, we show the utility of multi-modal explanations for CAD-assisted scenarios even in case of wrong disease predictions. We demonstrate that concept detectors for the explanation of pre-trained networks reach accuracies of up to 81.46%, which is comparable to supervised networks trained end-to-end.

Conclusions: We present a new end-to-end framework for the multi-modal explanation of DL-based biomedical image analysis in Melanoma classification and evaluate its utility on an array of datasets. Since perspicuous explanation is one of the cornerstones of any CAD system, we believe that ExAID will accelerate the transition from AI research to practice by providing dermatologists and researchers with an effective tool that they can both understand and trust. ExAID can also serve as the basis for similar applications in other biomedical fields.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2022.106620DOI Listing

Publication Analysis

Top Keywords

computer-aided diagnosis
8
skin lesions
8
biomedical image
8
image analysis
8
textual explanations
8
multi-modal explanations
8
explanation
6
framework
6
explanations
6
exaid
4

Similar Publications

The hippocampus is a small, yet intricate seahorse-shaped tiny structure located deep within the brain's medial temporal lobe. It is a crucial component of the limbic system, which is responsible for regulating emotions, memory, and spatial navigation. This research focuses on automatic hippocampus segmentation from Magnetic Resonance (MR) images of a human head with high accuracy and fewer false positive and false negative rates.

View Article and Find Full Text PDF

Objective: The objective of this research is to enhance pneumonia detection in chest X-rays by leveraging a novel hybrid deep learning model that combines Convolutional Neural Networks (CNNs) with modified Swin Transformer blocks. This study aims to significantly improve diagnostic accuracy, reduce misclassifications, and provide a robust, deployable solution for underdeveloped regions where access to conventional diagnostics and treatment is limited.

Methods: The study developed a hybrid model architecture integrating CNNs with modified Swin Transformer blocks to work seamlessly within the same model.

View Article and Find Full Text PDF

Cranioventral pulmonary consolidation (CVPC) is a common lesion observed in the lungs of slaughtered pigs, often associated with Mycoplasma (M.) hyopneumoniae infection. There is a need to implement simple, fast, and valid CVPC scoring methods.

View Article and Find Full Text PDF

Background And Objectives: Accurate classification of lymphadenopathy is essential for determining the pathological nature of lymph nodes (LNs), which plays a crucial role in treatment selection. The biopsy method is invasive and carries the risk of sampling failure, while the utilization of non-invasive approaches such as ultrasound can minimize the probability of iatrogenic injury and infection. With the advancement of artificial intelligence (AI) and machine learning, the diagnostic efficiency of LNs is further enhanced.

View Article and Find Full Text PDF

Background: This retrospective study aims to evaluate the impact of a content-based image retrieval (CBIR) application on diagnostic accuracy and confidence in interstitial lung disease (ILD) assessment using high-resolution computed tomography CT (HRCT).

Methods: Twenty-eight patients with verified pattern-based ILD diagnoses were split into two equal datasets (1 and 2). The images were assessed by two radiology residents (3rd and 5th year) and one expert radiologist in four sessions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!