Aquaporins (AQPs) are a group of proteins that evolved to mediate specific permeation of water and other small solutes, playing important roles in osmoregulation and nutrition, especially for aquatic animals. Genome-wide characterization of the AQP family in a typical mollusc, Pacific abalone, suggested that tandem duplication and retroduplication led to the dramatic expansion and diversification of AQP genes. Structural analysis indicated that tandem duplicated AQPs showed abnormal characteristics. The conserved amino acids in the key site of the Ar/R region were replaced by the others. These substitutions altered the pore diameter and properties of the inner surface and could accommodate the pass through of other molecules except water. Functional analysis indicated that abnormal Ar/R region of the tandemly adjacent members led to the different permeability, suggesting the neofunctionalization of tandemly duplicated genes. Mutation analysis indicated that at the key site of Ar/R region, just a single amino acid substitute could alter the permeability of HdAQPs, further explaining the mechanism of neofunctionalization between the tandem duplicated HdAQPs. Our observations provided strong evidence that duplication and subsequent neofunctionalization have led to structural and functional diversity of AQPs in Pacific abalone, providing insights into the evolution of AQPs in molluscs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2022.107392DOI Listing

Publication Analysis

Top Keywords

pacific abalone
12
analysis indicated
12
ar/r region
12
duplication subsequent
8
tandem duplicated
8
key site
8
site ar/r
8
subsequent functional
4
functional diversification
4
diversification aquaporin
4

Similar Publications

Comprehensive analysis of the xbp1 gene in Pacific abalone Haliotis discus hannai: Structure, expression, and role in heat stress response.

Int J Biol Macromol

January 2025

The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China. Electronic address:

The present study explores the x-box binding protein 1 (xbp1) gene in Haliotis discus hannai (Pacific abalone), focusing on its structure, expression, and functional role under heat stress. Southern blot revealed two copies of xbp1 in the intestine and mantle, one in the gill and muscle, and no detection in the digestive gland. mRNA expression level of xbp1 was highest in the gill, followed by the mantle, intestine, and muscle, with the digestive gland showing the lowest expression.

View Article and Find Full Text PDF

Intraspecific variation and functional study of VERL polymorphism in Pacific abalone (Haliotis discus hannai Ino) and giant abalone (H. gigantea Gmelin).

Int J Biol Macromol

January 2025

State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China. Electronic address:

Article Synopsis
  • Sperm and eggs have specific proteins called gamete recognition proteins (GRPs) that influence their compatibility in fertilization, and this study focuses on the VERL receptor in two abalone species.
  • The full-length VERL sequences were found to be different in Pacific abalone (11,373 bp) and giant abalone (9,405 bp), with variations in their amino acid compositions and repeats.
  • Notably, the study discovered a relationship between VERL genotypes and mating preferences in giant abalone, highlighting amino acid diversity's role in fertilization and providing insights for improving abalone breeding practices.
View Article and Find Full Text PDF

The rate at which mutations arise is a fundamental parameter of biology. Despite progress in measuring germline mutation rates across diverse taxa, such estimates are missing for much of Earth's biodiversity. Here, we present the first estimate of a germline mutation rate from the phylum Mollusca.

View Article and Find Full Text PDF

The metabolomics provides insights into the Pacific abalone () response to low temperature stress.

Heliyon

December 2024

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.

The low temperatures in winter, particularly the cold spells in recent years, have posed significant threats to China's abalone aquaculture industry. The low temperature tolerance of cultured abalone has drawn plenty of attention, but the metabolic response of abalone to low-temperature stress remains unclear. In this study, we investigated the metabolomic analysis of Pacific abalone () during low-temperature stress.

View Article and Find Full Text PDF
Article Synopsis
  • Awareness is growing about the threats to marine invertebrates like abalones, which are vulnerable due to slow growth and dense population needed for reproduction, compounded by fishing pressures and climate change.
  • An IUCN Red List assessment revealed that 71.43% of commercially fished abalone species are classified as threatened, compared to only 15.15% of unexploited species, highlighting the severe impact of fishing practices.
  • The North American Pacific coast shows the highest concentration of threatened abalone species, while areas like South Africa and Australia face issues with poaching and mass mortalities, prompting measures like ranching and stock enhancement to address these challenges.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!