ER reductive stress caused by Ero1α S-nitrosation accelerates senescence.

Free Radic Biol Med

National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China. Electronic address:

Published: February 2022

Oxidative stress in aging has attracted much attention; however, the role of reductive stress in aging remains largely unknown. Here, we report that the endoplasmic reticulum (ER) undergoes reductive stress during replicative senescence, as shown by specific glutathione and HO fluorescent probes. We constructed an ER-specific reductive stress cell model by ER-specific catalase overexpression and observed accelerated senescent phenotypes accompanied by disrupted proteostasis and a compromised ER unfolded protein response (UPR). Mechanistically, S-nitrosation of the pivotal ER sulfhydryl oxidase Ero1α led to decreased activity, therefore resulting in reductive stress in the ER. Inhibition of inducible nitric oxide synthase decreased the level of Ero1α S-nitrosation and decreased cellular senescence. Moreover, the expression of constitutively active Ero1α restored an oxidizing state in the ER and successfully rescued the senescent phenotypes. Our results uncover a new mechanism of senescence promoted by ER reductive stress and provide proof-of-concept that maintaining the oxidizing power of the ER and organelle-specific precision redox regulation could be valuable future geroprotective strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2022.01.006DOI Listing

Publication Analysis

Top Keywords

reductive stress
24
ero1α s-nitrosation
8
stress aging
8
senescent phenotypes
8
reductive
6
stress
6
stress caused
4
ero1α
4
caused ero1α
4
s-nitrosation accelerates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!