The use of cellular therapies to treat cancer, inherited immune deficiencies, hemoglobinopathies and viral infections is growing rapidly. The increased interest in cellular therapies has led to the development of reagents and closed-system automated instruments for the production of these therapies. For cellular therapy clinical trials involving multiple sites some people are advocating a decentralized model of manufacturing where patients are treated with cells produced using automated instruments at each participating center using a single, centrally held Investigational New Drug Application (IND). Many academic centers are purchasing these automated instruments for point-of-care manufacturing and participation in decentralized multiple center clinical trials. However, multiple site manufacturing requires harmonization of product testing and manufacturing in order to interpret the clinical trial results. Decentralized manufacturing is quite challenging since all centers should use the same manufacturing protocol, the same or comparable in-process and lot release assays and the quality programs from each center must work closely together. Consequently, manufacturing cellular therapies using a decentralized model is in many ways more difficult than manufacturing cells in a single centralized facility. Before an academic center decides to establish a point-of-care cell processing laboratory, they should consider all costs associated with such a program. For many academic cell processing centers, point-of-care manufacturing may not be a good investment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761342 | PMC |
http://dx.doi.org/10.1186/s12967-022-03238-5 | DOI Listing |
Neoplasia
December 2024
Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Tel Aviv University, Faculty of Medicine and Health Sciences, Tel Aviv, Israel; Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel; Davidoff Cancer Center, Beilinson Campus, Petah Tikva, Israel. Electronic address:
Triple-negative breast cancer (TNBC) is an aggressive subtype that accounts for 10-15 % of breast cancer. Current treatment of high-risk early-stage TNBC includes neoadjuvant chemo-immune therapy. However, the substantial variation in immune response prompts an urgent need for new immune-targeting agents.
View Article and Find Full Text PDFAnn Clin Transl Neurol
December 2024
Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
Objectives: To explore the efficacy of ofatumumab in new onset narcolepsy type 1 following SARS-CoV-2 infection.
Methods: We present a 9-year-old girl who experienced new onset narcolepsy type 1 following SARS-CoV-2 infection. Polysomnography (PSG) followed by a daytime multiple sleep latency test (MSLT) was under taken after admission.
Stem Cells Transl Med
December 2024
NEI/OSCTRS/OGVFB, Bethesda, MD, United States.
Retinal pigment epithelium (RPE) atrophy is a significant cause of human blindness worldwide, occurring in polygenic diseases such as age-related macular degeneration (AMD) and monogenic diseases such as Stargardt diseases (STGD1) and late-onset retinal degeneration (L-ORD). The patient-induced pluripotent stem cells (iPSCs)-derived RPE (iRPE) model exhibits many advantages in understanding the cellular basis of pathological mechanisms of RPE atrophy. The iRPE model is based on iPSC-derived functionally mature and polarized RPE cells that reproduce several features of native RPE cells, such as phagocytosis of photoreceptor outer segments (POS) and replenishment of visual pigment.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
Drug resistance of cancers remains a major obstacle due to limited therapeutics. Lysosome targeting is an effective method for overcoming drug resistance in cancer cells. St-N (ent-13-hydroxy-15-kaurene-19-acid N-methylpiperazine ethyl ester) is a novel alkaline stevioside derivative with an amine group.
View Article and Find Full Text PDFPLoS Pathog
December 2024
Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands.
The gastrointestinal tract is a prominent portal of entry for HIV-1 during sexual or perinatal transmission, as well as a major site of HIV-1 persistence and replication. Elucidation of underlying mechanisms of intestinal HIV-1 infection are thus needed for the advancement of HIV-1 curative therapies. Here, we present a human 2D intestinal immuno-organoid system to model HIV-1 disease that recapitulates tissue compartmentalization and epithelial-immune cellular interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!