Cadmium (Cd) is a toxic heavy metal that poses a serious threat to crop safety, productivity, and human health. Aegilops tauschii is the D genome donor of common wheat and shows abundant genetic variation. However, the tolerance of Ae. tauschii toward Cd at the molecular level is poorly understood. In this study, key factors involved in the Cd stress response of Ae. tauschii were investigated by RNA sequencing. Differentially expressed genes (DEGs) under Cd stress were identified in Ae. tauschii roots and shoots. A Fe(II)/2-oxoglutarate dependent dioxygenase (designated as AetSRG1), with an unknown function in Cd stress, was of particular interest. The open reading frame of AetSRG1 was cloned and overexpressed in wheat, which resulted in reduced Cd accumulation along with a lower Cd flux, decreased electrolyte leakage, and higher reactive oxygen species production. The protein of AetSRG1 interacted with phenylalanine ammonia lyase (PAL). Finally, we found that AetSRG1 stabilizes PAL and promotes the synthesis of endogenous salicylic acid. This study provides novel insights into the molecular mechanisms underlying the response of Ae. tauschii toward Cd stress. The key genes identified in this work serve as potential targets for developing low cadmium wheat.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.128226DOI Listing

Publication Analysis

Top Keywords

phenylalanine ammonia
8
ammonia lyase
8
response tauschii
8
aetsrg1
5
tauschii
5
aetsrg1 contributes
4
contributes inhibition
4
wheat
4
inhibition wheat
4
wheat accumulation
4

Similar Publications

Alginate oligosaccharide induces resistance against Penicillium expansum in pears by priming defense responses.

Plant Physiol Biochem

January 2025

School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. Electronic address:

The research intended to explore the control ability of alginate oligosaccharide (AOS) on Penicillium expansum infection in pear fruit by priming response and its mechanism. The results showed that 100 mg L AOS treatment could significantly reduce the incidence of postharvest blue mold and the lesion diameter in pear fruits and maintain their quality. The defense responses induced by AOS treatment alone were relatively mild in pear fruits.

View Article and Find Full Text PDF

Short-Time High-Oxygen Pre-Treatment Delays Lignification of Loquat ( Lindl.) During Low-Temperature Storage.

Foods

January 2025

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.

Lignification often occurs during low-temperature storage in loquat fruit, leading to increased firmness and lignin content, water loss, and changes in flavor. As induced stress factors, short-time high-oxygen pre-treatment (SHOP) can initiate resistant metabolism and regulate the physicochemical qualities during fresh fruit storage. However, the effect of SHOP on the lignification and quality of loquat has been reported less.

View Article and Find Full Text PDF

With the aim of enhancing plants' ability to respond to pathogenic fungi, this study focuses on disease resistance genes. We commenced a series of investigations by capitalizing on the pronounced differences in resistance to Fusarium wilt between resistant and susceptible varieties. Through an in-depth exploration of the metabolic pathways that bolster this defense, we identified genes associated with resistance to f.

View Article and Find Full Text PDF

Low-voltage electrostatic field (LP) enhances the freezing quality of food by increasing water supercooling and improving ice crystal morphology. This study explored the effects of LP treatment on the storage quality of square bamboo shoots using physicochemical, gas chromatography-mass spectrometry, and metabolomics methods. Results showed that with prolonged storage, the LP-treated group had lower activities of peroxidase, phenylalanine ammonia-lyase, and lower levels of malondialdehyde, cellulose, and lignin compared to the control group, while superoxide dismutase and catalase activities and shear force values were higher.

View Article and Find Full Text PDF

This study investigated the mechanisms employed by exogenous dopamine application in alleviating chilling injury in kiwifruits during storage at 1 °C for 120 days. Our results indicated that dopamine treatment at 150 µM alleviated chilling injury in kiwifruits during storage at 1 °C for 120 days. By 150 µM dopamine application, higher SUMO E3 ligase (SIZ1) and target of rapamycin (TOR) genes expression accompanied by lower poly(ADP-Ribose) polymerase 1 (PARP1) and sucrose non-fermenting 1-related kinase 1 (SnRK1) genes expression was associated with higher salicylic acid, ATP, NADPH and proline accumulation in kiwifruits during storage at 1 °C for 120 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!