Protein-based biomaterials offer several advantages over synthetic materials, owing to their unique stimuli-responsive properties, biocompatibility and modular nature. Here, we demonstrate that EC, a recombinant protein block polymer, consisting of five repeats of elastin like polypeptide (E) and a coiled-coil domain of cartilage oligomeric matrix protein (C), is capable of forming a porous networked gel at physiological temperature, making it an excellent candidate for injectable biomaterials. Combination of EC with Atsttrin, a chondroprotective engineered derivative of anti-inflammatory growth factor progranulin, provides a unique biochemical and biomechanical environment to protect against post-traumatic osteoarthritis (PTOA) onset and progression. EC gel was demonstrated to provide prolonged release of Atsttrin and inhibit chondrocyte catabolism while facilitating anabolic signaling in vitro. We also provide in vivo evidence that prophylactic and therapeutic application of Atsttrin-loaded EC gels protected against PTOA onset and progression in a rabbit anterior cruciate ligament transection model. Collectively, we have developed a unique protein-based gel capable of minimally invasive, sustained delivery of prospective therapeutics, particularly the progranulin-derivative Atsttrin, for therapeutic application in OA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055922 | PMC |
http://dx.doi.org/10.1016/j.biomaterials.2022.121370 | DOI Listing |
Sci Rep
January 2025
Division of Dentistry, School of Medical Sciences, The University of Manchester, Manchester, M13 9PL, UK.
This study aims to evaluate the effects of the home bleaching method on the surface microhardness and surface roughness of both polished and unpolished CAD-CAM resin composite materials. A polymer-infiltrated ceramic network (PICN) block, Enamic (VE), along with four resin composite blocks (RCB) (Grandio [GN], Lava™ Ultimate [LV], BRILLIANT Crios [B], and Cerasmart [CS]), were prepared to dimensions of 14 mm × 12 mm × 2 mm and were categorized into unpolished and polished groups (n = 4). Microhardness measurements were conducted using a Vickers microhardness tester (300 gf load for 20 s) at various time points: before home bleaching, after home bleaching with 15% Opalescence for 8 h and for 56 h, 24 h after bleaching, and one month after bleaching.
View Article and Find Full Text PDFLangmuir
January 2025
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
Catechol-derived polymers form stable coatings on a wide range of materials including challenging to coat low surface energy polymers. Whether modification of the coating polymer with fluorophilic or hydrophobic groups is a successful approach to further favor the coating of hydrophobic or fluorophilic surfaces with catechol-based polymers remains ambiguous. Herein, we report the effect of a series of catechol-derived polyglycerol (PG)-based coatings and monolayer coatings on the wettability of polytetrafluoroethylene (PTFE), polystyrene, and poly(methyl methacrylate) surfaces.
View Article and Find Full Text PDFChemistry
January 2025
Beijing Institute of Technology, Polymer Materials, 5 Zhongguancun Nandajie, 100081, Beijing, CHINA.
The self-assembly of block copolymers (BCPs) to form nanostructures of various morphologies and controllable dimensions has been a very promising research area in nanotechnology in recent decades. This review mainly summarizes the recent advances in precise and controllable self-assembly of BCPs through a tailored nucleation-growth strategy to modulate the self-assembly behavior of the BCPs. These efforts have led to a better understanding of the self-assembly mechanisms and opened new possibilities for creating novel materials with designable properties.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
While synthesizing circular polymers with telechelic polyolefin building blocks recently emerged as a promising strategy for addressing conventional polyethylenes' sustainability challenges, the lack of telechelic PP (PP) with sufficient difunctional purity for polycondensation has been limiting the development of circular polypropylenes with PP-like structures and properties. Here we described a combined approach of coordinative chain transfer polymerization and transition-metal-catalyzed quenching reaction with various acyl chlorides, affording PPs with a high difunctional ratio (up to ∼99%) and broad end functional group scope. The steric effect of polymeryl-Zn species and the role of Pd catalyst were revealed by DFT.
View Article and Find Full Text PDFChem Asian J
January 2025
Kyoto University, Institute for Integrated Cell-Material Sciences, Yoshida, Sakyo-ku, 606-8501, Kyoto, JAPAN.
The architectural characteristics of metal-organic frameworks (MOFs) can be examined through their net topology, which consists of nodes and linkers. A node's connectivity and site symmetry are likely the key elements influencing the net topology of MOFs. Metal-organic polyhedra (MOPs) function effectively as nodes when used as supermolecular building blocks (SBBs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!