A ratiometric fluorescent probe for hydrogen sulfide in neat aqueous solution and its application in lysosome-targetable cell imaging.

Spectrochim Acta A Mol Biomol Spectrosc

Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, 461000, PR China; College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450052, PR China. Electronic address:

Published: April 2022

AI Article Synopsis

  • Hydrogen sulfide (HS) is identified as an important gasotransmitter linked to various diseases, and while many fluorescent probes exist for its detection, few can specifically measure HS in lysosomes with ratiometric output.* -
  • A new water-soluble probe was developed by incorporating a 2,4-dinitrophenyl ether into a novel dye, showing a significant red-shift in fluorescence from 520 nm to 580 nm in response to HS.* -
  • This probe demonstrates high selectivity and sensitivity (detection limit of 0.81 nM), rapid response time (within 10 seconds), and effectiveness across a wide pH range (2.0-10.0), and has

Article Abstract

Hydrogen sulfide (HS) has been recently regarded as one of the most important gasotransmitters in the metabolic system, while abnormal HS concentration is associated with various diseases. Although numerous fluorescent probes have been developed for the detection of cellular HS, only a few of them can monitor lysosomal HS with ratiometric fluorescent output. Here, we developed a water-soluble probe 1 toward HS by introducing 2,4-dinitrophenyl ether into a novel merocyanine-based dye. As expected, HS induced an obvious red-shift of the probe from 520 nm to 580 nm in neat aqueous solution, and this fluorescent ratiometric response is highly selective and sensitive (with the detection limit of 0.81 nM), rapid (within 10 s), and effective in a wide pH range (2.0-10.0). In particular, the probe was successfully applied for tracing HS in the lysosomes of living cells and in zebrafish.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.120835DOI Listing

Publication Analysis

Top Keywords

ratiometric fluorescent
8
hydrogen sulfide
8
neat aqueous
8
aqueous solution
8
probe
4
fluorescent probe
4
probe hydrogen
4
sulfide neat
4
solution application
4
application lysosome-targetable
4

Similar Publications

Ratiometric sensor based on Ag-mediated luminescence of Tb-DNA complexes for visual detection of 4-aminophenol.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China. Electronic address:

Development of accurate, convenient and portable methods for monitoring 4-aminophenol (4-AP) is extremely important because of its strong toxicity. Here, a ratiometric fluorescence sensor based on Ag-enhanced luminescence of Tb-DNA complexes has been presented for the detection of 4-AP. The luminescence of Tb-DNA complexes is enhanced about 30 times by Ag, which can trigger energy transfer from DNA to Tb more efficiently.

View Article and Find Full Text PDF

Gold nanoclusters-based dual-mode ratiometric sensing system for selective and sensitive detection of paraquat.

Talanta

December 2024

Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China. Electronic address:

Unreasonable or illegal utilization of pesticides may lead to pollution of agricultural products, especially with some persistent but effective pesticides. Hence, there is an urgent need to develop sensitive and rapid methods for pesticide detection to ensure the safety of agricultural products. Herein, a dual-mode ratiometric sensing system utilizing two gold nanoclusters (G/R-AuNCs) was designed and constructed for paraquat (PQ) detection, a typical, highly toxic, widely used pesticide.

View Article and Find Full Text PDF

Ratiometric fluorescent probe and smartphone-based visual recognition for HO and organophosphorus pesticide based on Ce/Ce cascade enzyme reaction.

Food Chem

December 2024

Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China. Electronic address:

Organicphosphorus is a ubiquitous pesticide that has potential hazards to human health and environmental well-being. Therefore, the precise identification of residues of organophosphorus pesticides (OPs) emerges as an urgent necessity. A ratiometric fluorescent sensor for the detection of OPs by leveraging the catalytic activities of Ce and Ce on the two fluorescent substrates 4-Methylumbelliferyl phosphate (4-MUP) and o-phenylenediamine (OPD) correspondingly was designed.

View Article and Find Full Text PDF

BODIPY-Based Ratiometric Fluorescent Probe for Sensing Peroxynitrite in Inflammatory Cells and Tissues.

Biosensors (Basel)

December 2024

State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.

Peroxynitrite (ONOO) plays an important role in many physiological and pathological processes. Excessive ONOO in cells leads to oxidative stress and inflammation. However, precise monitoring of ONOO levels in specific organelles (e.

View Article and Find Full Text PDF

In this study, 3,4-diaminobenzoic acid (DABA) was introduced into the porphyrin metal-organic framework (PCN-224) for the first time to prepare a ratiometric fluorescent probe (PCN-224-DABA) to quantitatively detect ferric iron (Fe(III)) and selenium (IV) (Se(IV)). The fluorescence attributed to the DABA of PCN-224-DABA at 345 nm can be selectively quenched by Fe(III) and Se(IV), but the fluorescence emission peak attributed to tetrakis (4-carboxyphenyl) porphyrin (TCPP) at 475 nm will not be disturbed. Therefore, the ratio of I/I with an excitation wavelength of 270 nm can be designed to determine Fe(III) and Se(IV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!