A multi-targeted approach to identify potential flavonoids against three targets in the SARS-CoV-2 life cycle.

Comput Biol Med

Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144, Qatar. Electronic address:

Published: March 2022

The advent and persistence of the Severe Acute Respiratory Syndrome Coronavirus - 2 (SARS-CoV-2)-induced Coronavirus Disease (COVID-19) pandemic since December 2019 has created the largest public health emergency in over a century. Despite the administration of multiple vaccines across the globe, there continues to be a lack of approved efficacious non-prophylactic interventions for the disease. Flavonoids are a class of phytochemicals with historically established antiviral, anti-inflammatory and antioxidative properties that are effective against cancers, type 2 diabetes mellitus, and even other human coronaviruses. To identify the most promising bioactive flavonoids against the SARS-CoV-2, this article screened a virtual library of 46 bioactive flavonoids against three promising targets in the SARS-CoV-2 life cycle: human TMPRSS2 protein, 3CLpro, and PLpro. By examining the effects of glycosylation and other structural-activity relationships, the presence of sugar moiety in flavonoids significantly reduces its binding energy. It increases the solubility of flavonoids leading to reduced toxicity and higher bioavailability. Through protein-ligand contact profiling, it was concluded that naringin formed more hydrogen bonds with TMPRSS2 and 3CLpro. In contrast, hesperidin formed a more significant number of hydrogen bonds with PLpro. These observations were complimented by the 100 ns molecular dynamics simulation and binding free energy analysis, which showed a considerable stability of docked bioflavonoids in the active site of SARS-CoV-2 target proteins. Finally, the binding affinity and stability of the selected docked complexes were compared with the reference ligands (camostat for TMPRSS2, GC376 for 3CLpro, and GRL0617 for PLpro) that strongly inhibit their respective SARS-COV-2 targets. Overall analysis revealed that the selected flavonoids could be potential therapeutic agents against SARS-CoV-2. Naringin showed better affinity and stability for TMPRSS2 and 3CLpro, whereas hesperidin showed a better binding relationship and stability for PLpro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8750703PMC
http://dx.doi.org/10.1016/j.compbiomed.2022.105231DOI Listing

Publication Analysis

Top Keywords

flavonoids three
8
targets sars-cov-2
8
sars-cov-2 life
8
life cycle
8
bioactive flavonoids
8
hydrogen bonds
8
tmprss2 3clpro
8
affinity stability
8
flavonoids
7
sars-cov-2
6

Similar Publications

A number of studies demonstrate the therapeutic effectiveness of Radix Bupleuri (RB) and Hedysarum Multijugum Maxim (HMM) in treating liver fibrosis, but the exact molecular mechanisms remain unclear. This study aims to explore the mechanism of RB-HMM drug pairs in treating liver fibrosis by using network pharmacology, bioinformatics, molecular docking, molecular dynamics simulation technology and in vitro experiments. Totally, 155 intersection targets between RB-HMM and liver fibrosis were identified.

View Article and Find Full Text PDF

Engineering yeast to produce fraxetin from ferulic acid and lignin.

Appl Microbiol Biotechnol

January 2025

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.

Lignin, the most abundant renewable source of aromatic compounds on earth, remains underexploited in traditional biorefining. Fraxetin, a naturally occurring flavonoid, has garnered considerable attention in the scientific community due to its diverse and potent biological activities such as antimicrobial, anticancer, antioxidant, anti-inflammatory, and neurological protective actions. To enhance the green and value-added utilization of lignin, Saccharomyces cerevisiae was engineered as a cell factory to transform lignin derivatives to produce fraxetin.

View Article and Find Full Text PDF

[The many ways flowers send signals to pollinators].

Biol Aujourdhui

January 2025

Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris), Paris, France - Sorbonne Université, 4 place Jussieu, 75005 Paris, France.

The evolutionary success of angiosperms, which make up more than 95 percent of the world's terrestrial flora, is largely based on their interactions with animal pollinators. Indeed, it is estimated that, on average, 87.5 percent of flowering plants are pollinated by animals.

View Article and Find Full Text PDF

This study aimed to fortify Jamun () juice with vitamin D to address vitamin D deficiency and boost health. A nanoemulsion of vitamin D was fabricated using a low-temperature (4-20C) sonication method and incorporated into the juice. The vitamin D fortified jamun juice (VDFJJ) exhibited a total polyphenol content of 14.

View Article and Find Full Text PDF

Quercetin Reduces the Susceptibility to Cardiac Reperfusion Arrhythmias in Ovariectomized Rats.

Mol Nutr Food Res

January 2025

Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Cardiovascular diseases (CVDs) are the leading cause of death globally. Decrease in female sex hormones during menopause increases the risk of cardiovascular disease, mainly ischemic heart disease (IHD). Quercetin, a flavonoid, has beneficial properties in CVDs due to its antioxidant, anti-inflammatory, and anti-apoptotic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!