N-methyladenosine modification regulates imatinib resistance of gastrointestinal stromal tumor by enhancing the expression of multidrug transporter MRP1.

Cancer Lett

Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China. Electronic address:

Published: April 2022

N-methyladenosine (mA) is a frequently occurring mRNA modification, which regulates mRNA stability, splicing, and translation. However, its role in drug resistance of gastrointestinal stromal tumor (GIST) is not known. Here, we report that mA modification levels are elevated in imatinib-resistant GIST cells and tissues, and that methyltransferase METTL3 is one of the main protein responsible for this aberrant modification. Increased METTL3 levels contributed to imatinib resistance and worse progression-free survival of GIST patients. Mechanistic studies revealed that METTL3-mediated mA modification of the 5'UTR of the multidrug transporter MRP1 mRNA promoted drug resistance of GIST by stimulating MRP1 mRNA translation, via binding with YTHDF1 and eEF-1. Further, METTL3 transcription in imatinib resistant GIST cells was activated by ETV1, leading to the increased mA methylation of MRP1 mRNA. This is the first report showing a novel regulatory mechanism whereby ETV1, METTL3, and the YTHDF1/eEF-1 complex mediate the translation of MRP1 mRNA in an mA-dependent manner to regulate the intracellular concentration of imatinib and drug resistance of GIST. These findings highlight MRP1 as a new potential therapeutic target for imatinib resistance of GIST.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2022.01.008DOI Listing

Publication Analysis

Top Keywords

mrp1 mrna
16
imatinib resistance
12
drug resistance
12
resistance gist
12
modification regulates
8
resistance gastrointestinal
8
gastrointestinal stromal
8
stromal tumor
8
multidrug transporter
8
transporter mrp1
8

Similar Publications

Nrf2 Regulates Basal Glutathione Production in Astrocytes.

Int J Mol Sci

January 2025

Program in Neuroscience, Department of Biology, Syracuse University, Syracuse, NY 13210, USA.

Astrocytes produce and export glutathione (GSH), an important thiol antioxidant essential for protecting neural cells from oxidative stress and maintaining optimal brain health. While it has been established that oxidative stress increases GSH production in astrocytes, with Nrf2 acting as a critical transcription factor regulating key components of the GSH synthetic pathway, the role of Nrf2 in controlling constitutive GSH synthetic and release mechanisms remains incompletely investigated. Our data show that naïve primary mouse astrocytes cultured from the cerebral cortices of Nrf2 knockout (Nrf2) pups have significantly less intracellular and extracellular GSH levels when compared to astrocytes cultured from Nrf2 wild-type (Nrf2) pups.

View Article and Find Full Text PDF

Protective role of ABCC drug subfamily resistance transporters (ABCC1-7) in intestinal inflammation.

Immunol Res

January 2025

Inflammatory Bowel Disease Clinic, Department of Gastroenterology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga #15, Col. Belisario Domínguez Sección XVI, 14080, Mexico City, CPCDMX, Mexico.

The ABCC subfamily contains thirteen members. Nine of these transporters are called multidrug resistance proteins (MRPs). The MRPs have been associated with developing ulcerative colitis (UC).

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to explore how asiatic acid (AA) affects the drug resistance in human leukemia cells (K562/ADR) resistant to adriamycin (ADR).
  • AA was found to reduce the resistance of these cells and enhance the effectiveness of ADR, as shown by various assays including CCK-8 and flow cytometry.
  • The results indicated that AA down-regulates the expression of certain proteins related to drug resistance, suggesting a potential mechanism for reversing resistance in these cancer cells.
View Article and Find Full Text PDF

Background: Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide, with cisplatin (DDP) resistance being a significant challenge in its treatment. Histone deacetylase 1 (HDAC1) has been implicated in the regulation of NSCLC progression; however, its role in the resistance of NSCLC to DDP remains unclear.

Methods: The mRNA levels of HDAC1, ubiquitin specific peptidase 5 (USP5), and Rab interacting lysosomal protein (RILP) were analyzed by quantitative real-time polymerase chain reaction.

View Article and Find Full Text PDF

Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide because of its high morbidity and the absence of effective therapies. Even though paclitaxel is a powerful anticancer chemotherapy drug, recent studies have indicated its ineffectiveness against GC cells. Long non-coding RNA (lncRNA) PVT1 has a high expression in GC cells and increases the progression of tumors via inducing drug resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!