Novel synthetic prosthesis materials for patch angioplasty are continuously under development and optimization. When a nonwoven-based gelatin membrane is coupled with an electrospun layer of polycaprolactone (PCL), these biohybrid polymer membranes (BHMs) possess higher mechanical properties in aqueous environments. We hypothesized that BHMs can also be used as vascular patches, and we tested our hypothesis in a rat IVC venoplasty and aortic arterioplasty model. Patch venoplasty and arterioplasty were performed in SD rats (200 g), the patches were harvested at day 14, and samples were analyzed by immunohistochemistry and immunofluorescence. The BHM patches were almost degraded, with few parts remaining after 14 days. There was a line of CD34- and nestin-positive cells on the endothelium, with some cells were CD34 and nestin dual-positive, macrophages and leukocytes also participated in the patch healing process. There were PCNA-positive cells in the neointima and peri-patch area, with some cells were also PCNA and α-actin dual-positive. Arterial neointimal endothelial cells were Ephrin-B2- and dll-4-positive, and venous neointimal endothelial cells were Eph-B4- and COUP-TFII-positive. BHM shares a similar healing process like other patch materials, and BHM may have potential applications in vascular surgery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mvr.2022.104314 | DOI Listing |
Biomacromolecules
January 2025
State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
Antioxidant hydrogels that can provide a moist environment and scavenge reactive oxygen species have emerged as highly potential wound dressing materials. In situ-forming and good tissue adhesiveness will make them more desirable, as they can fill the irregular wound defect, stick to the wound, and offer intimate contact with the wound. Herein, a hydrogel dressing combining in situ-forming, good tissue adhesiveness, and excellent antioxidant capabilities was developed by simply conjugating dopamine onto carboxymethyl chitosan.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.
Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
The area of wound healing presents a promising field of interest for clinicians as well as the scientific community. A major concern for physicians is the rising number of elderly people suffering from diabetes, leprosy, tuberculosis and the associated chronic wounds. While traditional therapies target basic wound care, innovative strategies that accelerate wound healing are needed.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502 284, Telangana, India.
Despite advancements in chronic arthritis treatment, there remains a significant demand for advanced nanotechnologies capable of efficiently delivering a wide range of therapeutic agents to provide symptomatic relief and facilitate the healing of inflamed cartilage tissue. Considering the significant impact of hypoxia on the development and maintenance of chondral tissue, replicating its effects on stem cells could be a potential approach for the treatment of osteoarthritis (OA). Cobalt is a prominent hypoxia-inducing agent, owing to its ability to activate the hypoxia-inducible factor (HIF) pathway regardless of cellular oxygen levels.
View Article and Find Full Text PDFJ Dent Sci
January 2025
State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Background/purpose: Bisphosphonate-related osteonecrosis of the jaw (BRONJ), a complication arising from the use of bisphosphonates (BPs), inflicts long-term suffering on patients. Currently, there is still a lack of effective treatments. This study aimed to explore the preventive effects of propranolol (PRO) on BRONJ in vitro and in vivo, given PRO's potential in bone health enhancement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!