The mechanisms by which a high-fat diet (HFD) promotes non-alcoholic fatty liver disease (NAFLD) appear to involve liver mitochondrial dysfunction and redox imbalance. The functional loss of the enzyme NAD(P) transhydrogenase, a main source of mitochondrial NADPH, results in impaired mitochondrial peroxide removal, pyruvate dehydrogenase inhibition by phosphorylation, and progression of NAFLD in HFD-fed mice. The present study aimed to investigate whether pharmacological reactivation of pyruvate dehydrogenase by dichloroacetate attenuates the mitochondrial redox dysfunction and the development of NAFLD in NAD(P) transhydrogenase-null (Nnt) mice fed an HFD (60% of total calories from fat). For this purpose, Nnt mice and their congenic controls (Nnt) were fed chow or an HFD for 20 weeks and received sodium dichloroacetate or NaCl in the final 12 weeks via drinking water. The results showed that HFD reduced the ability of isolated liver mitochondria from Nnt mice to remove peroxide, which was prevented by the dichloroacetate treatment. HFD-fed mice of both Nnt genotypes exhibited increased body and liver mass, as well as a higher content of hepatic triglycerides, but dichloroacetate treatment attenuated these abnormalities only in Nnt mice. Notably, dichloroacetate treatment decreased liver pyruvate dehydrogenase phosphorylation levels and prevented the aggravation of NAFLD in HFD-fed Nnt mice. Conversely, dichloroacetate treatment elicited moderate hepatocyte ballooning in chow-fed mice, suggesting potentially toxic effects. We conclude that the protection against HFD-induced NAFLD by dichloroacetate is associated with its role in reactivating pyruvate dehydrogenase and reestablishing the pyruvate-supported liver mitochondrial capacity to handle peroxide in Nnt mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2022.174750DOI Listing

Publication Analysis

Top Keywords

nnt mice
20
pyruvate dehydrogenase
16
dichloroacetate treatment
16
mice
9
dichloroacetate
8
peroxide removal
8
liver mitochondria
8
nadp transhydrogenase-null
8
high-fat diet
8
liver mitochondrial
8

Similar Publications

Article Synopsis
  • Dimeric nicotinamide nucleotide transhydrogenase (NNT) is a crucial enzyme located in the mitochondrial inner membrane, involved in converting NADP/NADH to NADPH/NAD while facilitating proton influx, but its specific roles and regulation in health and diseases like cancer are still not thoroughly understood.! -
  • Research on NNT has been conducted through studies on gene mutations in specific models (like GCCD4 patients and C57BL/6J mice) and effects of NNT alterations in cancer cells, revealing both common and unique functional issues, yet information on NNT's physiological role in humans remains limited.! -
  • To advance understanding of NNT's functions and effects in various conditions, future
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of the mitochondrial protein NNT in obesity-related metabolic issues, using a specific mouse model lacking NNT genetic material.
  • Unlike previous studies, this research utilized a high-fat diet (45% calories from fat) that better represents typical fat-rich diets compared to the usual 60%.
  • Results show that mice without NNT gained less weight on a high-fat diet but had poorer glucose tolerance, while also revealing an increase in brown adipose tissue mass and inflammatory markers in the hypothalamus associated with diet-induced inflammation.
View Article and Find Full Text PDF
Article Synopsis
  • Open nanoshells, or 'semi shells', have special plasmonic properties due to their asymmetric structure and are typically made using complex methods, but this study introduces a simpler one-step process for creating them.
  • The newly fabricated PEGylated semi-shells show strong localized surface plasmon resonance under near-infrared light and remain effective even after being preserved for long periods, demonstrating safety in mice with no toxic effects post intravenous injection.
  • In animal trials, these PEGylated semi-shells exhibited high photothermal efficiency, leading to complete eradication of primary breast tumors without affecting critical organs, and resulted in a 75% survival rate without complications for up to 90 days
View Article and Find Full Text PDF

Here, we test whether early visual and OCT rod energy-linked biomarkers indicating pathophysiology in nicotinamide nucleotide transhydrogenase (Nnt)-null 5xFAD mice also occur in Nnt-intact 5xFAD mice and whether these biomarkers can be pharmacologically treated. Four-month-old wild-type or 5xFAD C57BL/6 substrains with either a null (B6J) Nnt or intact Nnt gene (B6NTac) and 5xFAD B6J mice treated for one month with either R-carvedilol + vehicle or only vehicle (0.01% DMSO) were studied.

View Article and Find Full Text PDF

Overall health relies on features of skeletal muscle that generally decline with age, partly due to mechanisms associated with mitochondrial redox imbalance and bioenergetic dysfunction. Previously, aged mice genetically devoid of the mitochondrial NAD(P) transhydrogenase (NNT, encoded by the nicotinamide nucleotide transhydrogenase gene), an enzyme involved in mitochondrial NADPH supply, were shown to exhibit deficits in locomotor behavior. Here, by using young, middle-aged, and older NNT-deficient (Nnt) mice and age-matched controls (Nnt), we aimed to investigate how muscle bioenergetic function and motor performance are affected by NNT expression and aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!