Seed formation is part of the reproductive cycle, leading to the accumulation of resistance stages that can withstand harsh environmental conditions for long periods of time. At the community level, multiple species with such long-lasting life stages can be more likely to coexist. While the implications of this process for biodiversity have been studied in terrestrial plants, seed banks are usually neglected in phytoplankton multispecies dynamic models, in spite of widespread empirical evidence for such seed banks. In this study, we build a metacommunity model of interacting phytoplankton species, including a resting stage supplying the seed bank. The model is parameterized with empirically-driven growth rate functions and field-based interaction estimates, which include both facilitative and competitive interactions. Exchanges between compartments (coastal pelagic cells, coastal resting cells on the seabed, and open ocean pelagic cells) are controlled by hydrodynamical parameters to which the sensitivity of the model is assessed. We consider two models, i.e., with and without a saturating effect of the interactions on the growth rates. Our results are consistent between models, and show that a seed bank allows to maintain all species in the community over 30 years. Indeed, a fraction of the species are vulnerable to extinction at specific times within the year, but this process is buffered by their survival in their resting stage. We thus highlight the potential role of the seed bank in the recurrent re-invasion of the coastal community, and of coastal environments in re-seeding oceanic regions. Moreover, the seed bank enables populations to tolerate stronger interactions within the community as well as more severe changes to the environment, such as those predicted in a climate change context. Our study therefore shows how resting stages may help phytoplanktonic diversity maintenance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2022.111020 | DOI Listing |
Am J Reprod Immunol
January 2025
Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA.
Problem: COVID-19 during pregnancy is linked to increased maternal morbidity and a higher incidence of preterm births (PTBs), yet the underlying mechanisms remain unclear. Cellular senescence, characterized by the irreversible cessation of cell division, is a critical process in placental function, and its dysregulation has been implicated in pregnancy complications like PTB. Senescence can be induced by various stressors, including oxidative stress, DNA damage, and viral infections.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:
At-risk conifer stands growing in hot, arid conditions at low elevations may contain the most climate change-adapted seeds needed for sustainable forestry. This study used a triage framework to identify high-priority survey areas for Pinus ponderosa (Pipo) within a large region, by intersecting an updated range map with a map of seed zones and elevation bands (SZEBs). The framework assesses place-based climate change and potential wildfire risks by rank-order across 740 potential collection units.
View Article and Find Full Text PDFPeerJ
December 2024
Institute of Science and Engineering of Ecology in Arid and Semi-arid Areas, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, China.
Urbanization greatly impacts both the diversity of soil seed banks and the spatial dynamics of species. These seed banks serve as a window into the ecological history and potential for recovery in urban wastelands, which are continually evolving due to urbanization. In this study, we selected 24 plots along urban-rural gradients in Shanghai, China.
View Article and Find Full Text PDFPlant Biol (Stuttg)
December 2024
Laboratory of Entomology, Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands.
Plants can sustain various degrees of damage or compensate for tissue loss by regrowth without significant fitness costs. This tolerance to insect herbivory depends on the plant's developmental stage during which the damage is inflicted and on how much tissue is removed. Plant fitness correlates, that is, biomass and germination of seeds, were determined at different ontogenetic stages, vegetative, budding, or flowering stages of three annual brassicaceous species exposed to feeding by Pieris brassicae caterpillars at different intensities.
View Article and Find Full Text PDFShrub encroachment can alter the structure and function of grassland ecosystems, leading to their degradation. Therefore, population regeneration dynamics after shrub encroachment on the influence of grassland should not be ignored. , as a pioneer species, has significantly encroached with large areas on the Qinghai-Tibetan Plateau (QTP) due to climate change and over-grazing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!