A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of groundwater drawdown using artificial neural networks. | LitMetric

Prediction of groundwater drawdown using artificial neural networks.

Environ Sci Pollut Res Int

Department of Geological and Environmental Sciences, Western Michigan University, Kalamazoo, MI, USA.

Published: May 2022

Groundwater drawdown is typically measured using pumping tests and field experiments; however, the traditional methods are time-consuming and costly when applied to extensive areas. In this research, a methodology is introduced based on artificial neural network (ANN)s and field measurements in an alluvial aquifer in the north of Iran. First, the annual drawdown as the output of the ANN models in 250 piezometric wells was measured, and the data were divided into three categories of training data, cross-validation data, and test data. Then, the effective factors in groundwater drawdown including groundwater depth, annual precipitation, annual evaporation, the transmissivity of the aquifer formation, elevation, distance from the sea, distance from water sources (recharge), population density, and groundwater extraction in the influence radius of each well (1000 m) were identified and used as the inputs of the ANN models. Several ANN methods were evaluated, and the predictions were compared with the observations. Results show that the modular neural network (MNN) showed the highest performance in modeling groundwater drawdown ​​(Training R-sqr = 0.96, test R-sqr = 0.81). The optimum network was fitted to available input data to map the annual drawdown ​​across the entire aquifer. The accuracy assessment of the final map yielded favorable results (R-sqr = 0.8). The adopted methodology can be applied for the prediction of groundwater drawdown in the study site and similar settings elsewhere.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-18115-9DOI Listing

Publication Analysis

Top Keywords

groundwater drawdown
20
prediction groundwater
8
artificial neural
8
neural network
8
annual drawdown
8
ann models
8
drawdown
7
groundwater
6
data
5
drawdown artificial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!