Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with poor chemotherapeutic efficiency due to multidrug resistance (MDR); it is very important to develop a targeted nanocarrier for the treatment of HCC. In this study, a programmed death ligand 1 (PD-L1)-conjugated nanoliposome was constructed for co-delivery of paclitaxel (PTX) and P-glycoprotein (P-gp) inhibitor zosuquidar (ZSQ) to overcome MDR in human HCC cells and tumors in vivo. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) were used to examine the nanoparticles morphology and size; PD-1-conjugated PTX and ZSQ-loaded nanoliposomes (PD-PZLP) revealed a spherical shape with a size of 139.5 ± 10.7 nm. Then, the physicochemical properties, as well as the drug loading capacity, release profile, cellular uptake, and cytotoxicity of the dual drug-encapsulated nanoliposomes were characterized. PD-PZLP displayed a high drug loading capacity of 20 ~ 30% for both PTX and ZSQ; the drug release of PTX and ZSQ in pH 5.0 was significantly faster than in pH 7.4. Cellular uptake study demonstrated PD-PZLP had higher internalization efficiency than non-targeted PZLP. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and reactive oxygen species (ROS) analysis demonstrated that PD-PZLP triggered an excessive ROS reaction and cell apoptosis compared with that of free PTX or ZSQ, which was also consistent with the cell antiproliferative effects in MTT assay. Furthermore, PD-PZLP could enhance synergistic antitumor effects on 7721/ADM xenograft tumor model, which also significantly alleviated hepatotoxicity as evident from the decreased aspartate transaminase (AST) and alanine transaminase (ALT) levels. Overall, PD-PZLP exhibited high loading capacity, significant synergistic effects, promising antitumor efficacy, and the lowest toxicity, which provide a promising strategy to overcome MDR in HCC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13346-021-01106-1DOI Listing

Publication Analysis

Top Keywords

loading capacity
12
ptx zsq
12
synergistic antitumor
8
antitumor efficacy
8
zsq-loaded nanoliposomes
8
overcome mdr
8
drug loading
8
cellular uptake
8
demonstrated pd-pzlp
8
pd-pzlp
6

Similar Publications

Regenerating periodontal bone defect surrounding periodontal tissue is crucial for orthodontic or dental implant treatment. The declined osteogenic ability of periodontal ligament stem cells (PDLSCs) induced by inflammation stimulus contributes to reduced capacity to regenerate periodontal bone, which brings about a huge challenge for treating periodontitis. Here, inspired by the adhesive property of mussels, we have created adhesive and mineralized hydrogel microspheres loaded with traditional compound cordycepin (MMS-CY).

View Article and Find Full Text PDF

The widespread application of pyraclostrobin (PYR), an important strobilurin fungicide with low utilization efficiency, urgently requires optimization for sustainable agriculture. In this study, nanoformulated PYR with nano-iron bismuthide (FeBi) was successfully prepared via flash nanoprecipitation, yielding spherical PYR/FeBi nanoparticles (NPs, Φ120 nm) with stable drug loading capacity (67.9%) and controlled release.

View Article and Find Full Text PDF

Pre-assembled nanospheres in mucoadhesive microneedle patch for sustained release of triamcinolone in the treatment of oral submucous fibrosis.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University; Hunan Engineering Research Center for Oral Digital Intelligence and Personalized Medicine; Hunan 3D Printing Engineering Research Center of Oral Care; WANG Songling Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410078.

Objectives: Drug-loaded mucoadhesive silk fibroin (SF) microneedle patch can overcome the limitations of low bioavailability and significant pain associated with traditional treatment methods, such as topical application or injection of triamcinolone for oral submucous fibrosis (OSF). However, these systems release the drug too quickly, failing to meet the clinical requirements. This study aims to construct a mucoadhesive SF microneedle patch pre-assembled with silk fibroin nanospheres (SFN) and explore its ability to sustain the release of triamcinolone in the treatment of OSF.

View Article and Find Full Text PDF

Use of pennisetin-casein complex microparticles for Curcuma longa L. extract microencapsulation: Improvement of antioxidant and alpha-amylase inhibitory activities.

Int J Biol Macromol

January 2025

Laboratoire de recherche sur les produits bioactifs et valorisation de la biomasse, Ecole Normale Supérieure de Kouba cheikh Mohamed elbachir ElIbrahimi, B.P. 92, 16308 Vieux-Kouba, Algiers, Algeria. Electronic address:

This study aimed to use a new protein complex of Pennisetin (Pen) a non gluten protein of pearl millet and casein (Cas), for curcumin (Cur) extract encapsulation using simple or complex coacervation. The potential improvement of Cur antioxidant activities and α-amylase inhibition after encapsulation was explored. Complex microparticles of Pen and Cas with various ratios exhibited average diameters ranging from 1.

View Article and Find Full Text PDF

Improved activity and stability of cellulase by immobilization on FeO nanoparticles functionalized with Reactive Red 120.

Int J Biol Macromol

January 2025

Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran. Electronic address:

Cellulase is extensively used in the biorefinery of cellulosic materials to fermentable sugars in bioethanol production. Application of cellulase in the free form has disadvantages in enzyme wastage and low stability. The results of the present work showed these drawbacks can be solved by cellulase immobilization on functionalized FeO magnetic nanoparticles (MNPs) with reactive red 120 (RR120) as the affinity ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!