Alzheimer's disease (AD) is a complex and progressive neurodegenerative disease with impaired synapse, imbalanced mineral metabolism, protein mis-folding and aggregation. Bis(ethylmaltolato)oxidovanadium(IV) (BEOV), an organic bioactive vanadium compound with low toxicity and high bioavailability, has been studied as therapeutic agent against tuberculosis and diabetes. However, its neuroprotective effects have rarely been reported. Therefore, in this study, the potential application of BEOV in intervening AD cognitive dysfunction and neuropathology was evaluated. Both low- and high-dose of BEOV (0.2 mmol/L and 1.0 mmol/L) supplementation for 2 months improved the spatial learning and memory deficits of the triple-transgenic AD (3 × Tg AD) mice and mitigated the loss of synaptic proteins and synaptic dysfunction. By inhibiting the expression of amyloid-β precursor protein and β-secretase, and the phosphorylation of tau protein at Ser262, Ser396, Ser404, and Ser202/Thr205 residues, BEOV reduced the amyloid-β deposition and neurofibrillary tangle formation in AD mouse brains and primarily cultured neurons. Further analysis of the brain ionome revealed that BEOV supplementation could significantly affect the concentrations of a variety of metals, most of which, including several AD risk metals, showed reduced levels, particularly with a high-dose intake. Additionally, the elemental correlation network identified both conserved and specific elemental correlations, implying a highly complex and dynamic crosstalk between vanadium and other elements during long-term BEOV supplementation. Overall, our results suggest that BEOV is effective in AD intervention via both ameliorating the disease related pathology and regulating metal homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-021-02938-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!