The functional absence of the electron-transfer flavoprotein: ubiquinone oxidoreductase (ETFQO) directly impacts electrons donation to the mitochondrial electron transport chain under carbohydrate-limiting conditions without major impacts on the respiration of cell cultures. Alternative substrates (e.g., amino acids) can directly feed electrons into the mitochondrial electron transport chain (mETC) via the electron transfer flavoprotein/electron-transfer flavoprotein: ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports plant respiration during stress situations. By using a cell culture system, here we investigated the responses of Arabidopsis thaliana mutants deficient in the expression of ETFQO (etfqo-1) following carbon limitation and supplied with amino acids. Our results demonstrate that isovaleryl-CoA dehydrogenase (IVDH) activity was induced during carbon limitation only in wild-type and that these changes occurred concomit with enhanced protein content. By contrast, neither the activity nor the total amount of IVDH was altered in etfqo-1 mutants. We also demonstrate that the activities of mitochondrial complexes in etfqo-1 mutants, display a similar pattern as in wild-type cells. Our findings suggest that the defect of ETFQO protein culminates with an impaired functioning of the IVDH, since no induction of IVDH activity was observed. However, the functional absence of the ETFQO seems not to cause major impacts on plant respiration under carbon limiting conditions, most likely due to other alternative electron entry pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-021-02822-1DOI Listing

Publication Analysis

Top Keywords

flavoprotein ubiquinone
12
ubiquinone oxidoreductase
12
electron-transfer flavoprotein
8
cell cultures
8
functional absence
8
mitochondrial electron
8
electron transport
8
transport chain
8
major impacts
8
amino acids
8

Similar Publications

NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) protein is located in the mitochondria and can regulate cell proliferation. Some studies have shown that the high NDUFA4L2 expression is linked with poor prognosis and cancer progression in various patients with cancers. However, the correlation between NDUFA4L2 and pan-cancer is unknown.

View Article and Find Full Text PDF

Proton-translocating NADH-ubiquinone oxidoreductase (complex I) catalyzes the oxidation of NADH by ubiquinone accompanied by the transmembrane transfer of four protons, thus contributing to the formation of a proton motive force () across the coupling membranes of mitochondria and bacteria, which drives ATP synthesis in oxidative phosphorylation. In recent years, great progress has been achieved in resolving complex I structure by means of X-ray crystallography and high-resolution cryo-electron microscopy, which has led to the formulation of detailed hypotheses concerning the molecular mechanism of coupling of the redox reaction to vectorial proton translocation. To test and probe proposed mechanisms, a comprehensive study of complex I using other methods including molecular dynamics and a variety of biochemical studies such as kinetic and inhibitory analysis is required.

View Article and Find Full Text PDF

How Pseudomonas conducts reductive dechlorination of 2,4,6-trichlorophenol: Insights into metabolic performance and organohalide respiration process.

Water Res

December 2024

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China. Electronic address:

Organohalide-respiring bacteria (OHRB) play a key role in facilitating the detoxification of halogenated organics, but their slow growth and harsh growth conditions often limit their application in field remediation. In this study, we investigated the metabolic performance and organohalide respiration process of a non-obligate OHRB, Pseudomonas sp. CP-1, demonstrating favorable anaerobic reductive dechlorination ability of 2,4,6-trichlorophenol to 4-chlorophenol with a removal rate constant (k) of 0.

View Article and Find Full Text PDF

Background: Chronic atrophic gastritis (CAG) is a chronic disease of the gastric mucosa characterized by a reduction or an absolute disappearance of the original gastric glands, possibly replaced by pseudopyloric fibrosis, intestinal metaplasia, or fibrosis. CAG develops progressively into intestinal epithelial metaplasia, dysplasia, and ultimately, gastric cancer. Epidemiological statistics have revealed a positive correlation between the incidence of CAG and age.

View Article and Find Full Text PDF

The 24-kDa subunit of mitochondrial complex I regulates growth, microsclerotia development, stress tolerance, and virulence in Verticillium dahliae.

BMC Biol

December 2024

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.

Background: The complete mitochondrial respiratory chain is a precondition for maintaining cellular energy supply, development, and metabolic balance. Due to the evolutionary differentiation of complexes and the semi-autonomy of mitochondria, respiratory chain subunits have become critical targets for crop improvement and fungal control. In fungi, mitochondrial complex I mediates growth and metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!