Background: To compare the accuracy of recently developed modern intraocular lens (IOL) power formulas (Barrett Universal II, Kane and VRF-G) with existing IOL power formulas in eyes with an axial length (AL) ≤ 22 mm.

Methods: This analysis comprised 172 eyes of 172 patients operated on by one surgeon (LT) with one IQ SN60WF (Alcon Labs, Fort Worth, TX, USA) hydrophobic lens. Ten IOL formulas were evaluated: Barrett Universal II (BUII), Haigis, Hoffer Q, Holladay 1, Holladay 2, Kane, SRK/T, T2, VRF and VRF-G. The median absolute error (MedAE), mean absolute error (MAE), standard deviation (SD) and all descriptive statistics were evaluated. Percentages of eyes with a prediction error within ±0.25 D, ±0.50 D, ±0.75 D and ±1.00 D were calculated using standard optimised constants for the entire range of axial lengths.

Results: The VRF-G, Haigis and Kane produced the smallest MedAE among all formulas (0.242 D, 0.247 D and 0.263 D, respectively) and had the highest percentage of eyes with a PE within ±0.50 D (75.67%, 73.84% and 75.16%, respectively). The Barrett was less accurate (0.298 D and 68.02%, respectively). Statistically significant differences were found predominantly between the VRF-G (P < 0.05), Kane (P < 0.05) and Haigis (P < 0.05) and all other formulas. The percentage of eyes with a PE within ±0.50 D ranged from 66.28% to 75.67%.

Conclusions: In eyes with AL ≤ 22.0 mm, the VRF-G, Haigis and Kane were the most accurate predictors of postoperative refraction, and the Barrett formula was less predictable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9829916PMC
http://dx.doi.org/10.1038/s41433-021-01890-7DOI Listing

Publication Analysis

Top Keywords

barrett universal
12
universal kane
8
kane vrf-g
8
intraocular lens
8
formulas eyes
8
iol power
8
power formulas
8
absolute error
8
formulas
6
vrf-g
5

Similar Publications

Intraocular lens power calculation in cataract patients with keratoconus: Bayesian network meta-analysis.

Int Ophthalmol

January 2025

Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, No.1, Dong Jiao Min Xiang, Dong Cheng District, Beijing, 100730, China.

Purpose: To compare the accuracy of intraocular lens (IOL) power calculation formulas in cataract patients with keratoconus (KC).

Methods: This study followed the Preferred Reporting Items for Systematic Reviews and Meta-analysis statementand and was registered on PROSPERO (CRD42024568997). Pubmed, Web of Science, Cochrane Library, and EMBASE were searched for retrospective and prospective clinical studies published until October 2024.

View Article and Find Full Text PDF

Purpose: To compare the refractive accuracy of the Barrett True axial length (BTAL) formula, newly integrated into ARGOS, with that of the Barrett Universal II (BUII) formula calculated using axial length (AL) from IOL Master 700.

Setting: Private clinics in Kanagawa, Japan.

Design: Retrospective observational study.

View Article and Find Full Text PDF

Purpose: To investigate the impact of the distance from the most-anterior surface of the optic to the principal object plane (POP) and from the foremost haptic to the principal object plane (H-POP) on the intraocular lens (IOL) power calculation.

Setting: A tertiary hospital.

Design: Optical simulation and retrospective cross-sectional study.

View Article and Find Full Text PDF

Risk factors for biometry prediction error by Barrett Universal II intraocular lens formula in Chinese patients.

Int J Ophthalmol

January 2025

Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China.

Aim: To investigate the influence of postoperative intraocular lens (IOL) positions on the accuracy of cataract surgery and examine the predictive factors of postoperative biometry prediction errors using the Barrett Universal II (BUII) IOL formula for calculation.

Methods: The prospective study included patients who had undergone cataract surgery performed by a single surgeon from June 2020 to April 2022. The collected data included the best-corrected visual acuity (BCVA), corneal curvature, preoperative and postoperative central anterior chamber depths (ACD), axial length (AXL), IOL power, and refractive error.

View Article and Find Full Text PDF

Intraocular lens calculation formula selection for short eyes: based on axial length and anterior chamber depth.

BMC Ophthalmol

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China.

Purpose: To evaluate the predictive accuracy of 11 intraocular lens (IOL) calculation formulas in eyes with an axial length (AL) less than 22.00 mm.

Methods: New-generation formulas (Barrett Universal II [BUII], Emmetropia Verifying Optical [EVO] 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!