Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) has proved effective for the identification of many arthropods. A total of 432 termite specimens were collected in Mali, Cote d'Ivoire, Togo, Senegal, Switzerland and France. Morphologically, 22 species were identified, including Ancistrotermes cavithorax, Amitermes evuncifer, Cryptotermes brevis, Cubitermes orthognathus, Kalotermes flavicollis, Macrotermes bellicosus, Macrotermes herus, Macrotermes ivorensis, Macrotermes subhyalinus, Microcerotermes parvus, Microtermes sp., Odontotermes latericius, Procubitermes sjostedti, Promirotermes holmgreni, Reticulitermes grassei, Reticulitermes lucifugus, Reticulitermes santonensis, Trinervitermes geminatus, Trinervitermes occidentalis, Trinervitermes togoensis, Trinervitermes sp., Trinervitermes trinervoides and Trinervitermes trinervius. Analysis of MALDI-TOF MS spectra profiles from termites revealed that all were of high quality, with intra-species reproducibility and inter-species specificity. Blind testing of the spectra of 389 termites against our updated database with the spectra of 43 specimens of different termite species revealed that all were correctly identified with log score values (LSVs) ranging from 1.65 to 2.851, mean 2.290 ± 0.225, median 2.299, and 98.4% (383) had LSVs > 1.8. This study is the first on the use of MALDI-TOF for termite identification and shows its importance as a tool for arthropod taxonomy and reinforces the idea that MALDI-TOF MS is a promising tool in the field of entomology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760289 | PMC |
http://dx.doi.org/10.1038/s41598-021-04574-0 | DOI Listing |
Heliyon
March 2024
Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.
Termites are one of the most common pests that damage wood and other cellulosic materials Although Africa has more varieties of termite species than any other continent, few entomological studies have been conducted in Gabon. Identifying termites poses significant difficulties for entomologists. The aim of this study was to evaluate the reliability and confirm the significance of MALDI-TOF MS in identifying fresh termites collected in equatorial Africa.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
August 2023
Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand.
Chitinolytic bacteria were isolated from guts and shells of the termite Microcerotermes sp. Among the nineteen morphologically different chitinolytic isolates, three isolates with highest extracellular chitinase production ratio (≥2.26) were selected.
View Article and Find Full Text PDFSci Rep
May 2023
Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS - University of Tours, Tours, France.
Proteins are known to be social interaction signals in many species in the animal kingdom. Common mediators in mammals and aquatic species, they have seldom been identified as such in insects' behaviors. Yet, they could represent an important component to support social signals in social insects, as the numerous physical contacts between individuals would tend to favor the use of contact compounds in their interactions.
View Article and Find Full Text PDFSci Rep
January 2022
Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) has proved effective for the identification of many arthropods. A total of 432 termite specimens were collected in Mali, Cote d'Ivoire, Togo, Senegal, Switzerland and France. Morphologically, 22 species were identified, including Ancistrotermes cavithorax, Amitermes evuncifer, Cryptotermes brevis, Cubitermes orthognathus, Kalotermes flavicollis, Macrotermes bellicosus, Macrotermes herus, Macrotermes ivorensis, Macrotermes subhyalinus, Microcerotermes parvus, Microtermes sp.
View Article and Find Full Text PDFMicroorganisms
September 2021
Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
Bioconversion of lignocellulose into renewable energy and commodity products faces a major obstacle of inefficient saccharification due to its recalcitrant structure. In nature, lignocellulose is efficiently degraded by some insects, including termites and beetles, potentially due to the contribution from symbiotic gut bacteria. To this end, the presented investigation reports the isolation and characterization of cellulolytic bacteria from the gut system of red flour beetle, .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!