Pickering emulsions are systems composed of two immiscible fluids, which are stabilized by solid organic or inorganic particles. These solid particles include a broad range of particles that can be used to stabilize Pickering emulsions. An improved resistance against coalescence and lower toxicity, against conventional emulsions stabilized by surfactants, make Pickering emulsions suitable candidates for numerous applications, such as catalysis, food, oil recovery, cosmetics, and pharmaceutical industries. In this article, we give an overview of Pickering emulsions focusing on topical applications. First, we reference the parameters that influence the stabilization of Pickering emulsions. Second, we discuss some of the already investigated topical applications of nano- and microparticles used to stabilize Pickering emulsions. Afterwards, we consider some of the most promising stabilizers of Pickering emulsions for topical applications. Ultimately, we carried out a brief analysis of toxicity and advances in future perspectives, highlighting the promising use of these emulsions in cosmetics and dermopharmaceutical formulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2022.121455 | DOI Listing |
Int J Biol Macromol
January 2025
College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China. Electronic address:
In this work, Pleurotus eryngii protein-polysaccharide conjugates (PE-PPCs) were used as the only stabilizer for the preparation of high internal phase emulsions (HIPEs). PE-PPCs presented spherical particles in solution, and their three-phase contact angle had a strong correlation with pH values, and the angle at pH 10.0 was almost 90°, showing the most balanced hydrophilicity and hydrophobicity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. Electronic address:
The inherent propensity for aggregation necessitates the use of high concentrations of protein-polysaccharide nanoparticles to achieve stable Pickering emulsions. This study employed xanthan gum (XG) to mitigate the pronounced aggregation of zein nanoparticles by structure construction, thereby enhancing the emulsifying efficiency of zein/XG (Z/XG) nanoparticles. The Z/XG nanoparticles displayed significantly enhanced dispersity, with the absolute ζ-potential increasing from 6.
View Article and Find Full Text PDFFood Chem X
January 2025
School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
The potential applications of Bunge seed oil in the food and medical industries are constrained by its susceptible fatty acid composition, which is prone to oxidation. In this study, rice bran protein (RBP) was employed as an emulsifier for the fabrication of Bunge seed oil Pickering emulsion. The impact of antioxidant-phytic acid (PA) on the stability of Pickering emulsion and the underlying mechanisms were further investigated.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States.
Protein-polysaccharide complex carrier can solve the problem of insufficient stability of Monascus pigments (MPs), a kind of natural pigments, against heat and light. It also has the function to stabilize Pickering emulsion (PE) that can be used as fat replacer in meat products. In this study, heat denatured whey protein (HWP) and pectin modified by octenyl succinic anhydride (OSA-pectin) were prepared into complex by adding Ca loaded with MPs.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, China. Electronic address:
The toughening coix seed oil (CSO) high internal phase Pickering emulsion (CSO-HIPES) and gel (CSO-HIPESG) comprised of carrageenan (CR)/super-deamidated-gluten (SDG) micro-particles (CR/SDG) were investigated via acid-heat induction. Results showed polysaccharide natural deep eutectic solvent (P-NADES) by citric acid-glucose-carrageenan ((CGCR), molar ratio at 1:1:0.035) was the crucial for the preparation of SDG (deamidation degree, 99.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!