A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Distributed model predictive control based on neighborhood optimization for thickness and tension control system in tandem cold rolling mill. | LitMetric

The control precision of thickness and tension is a crucial indicator for evaluating a tandem cold rolling control system. However, the control mode for field application cannot meet the actual quality requirements. Therefore, a distributed model predictive control (DMPC) strategy combined with neighborhood optimization is proposed to decrease the strip thickness deviation and tension change in this paper. First, a cold rolling model describing the relationship among the process parameters is established for the multi-stand cold rolling system. Then, according to the neighborhood optimization theory, the state evolution equation of the output system on each stand is derived. Furthermore, through proper consideration of the input and state information during optimization, optimal control variables are obtained using the proposed performance index to improve the system performance. A series of simulations were carried out with actual rolling data to analyze and validate the capability of the designed control system. The statistical data show that as roll speed disturbance occurs, the thickness and tension deviations can be controlled within respective ranges of 6 × 10 mm and 0.012 kN with the DMPC control strategy. In addition, each scan cycle calculation only takes 0.0085 s in such a strategy. Compared with the conventional control method, the thickness and tension DMPC control system provides excellent performance and can effectively enhance the strip product quality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2021.12.030DOI Listing

Publication Analysis

Top Keywords

thickness tension
16
control system
16
cold rolling
16
neighborhood optimization
12
control
11
distributed model
8
model predictive
8
predictive control
8
tandem cold
8
dmpc control
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!