While the study of graphs has been very popular, simplicial complexes are relatively new in the network science community. Despite being a source of rich information, graphs are limited to pairwise interactions. However, several real-world networks such as social networks, neuronal networks, etc., involve interactions between more than two nodes. Simplicial complexes provide a powerful mathematical framework to model such higher-order interactions. It is well known that the spectrum of the graph Laplacian is indicative of community structure, and this relation is exploited by spectral clustering algorithms. Here we propose that the spectrum of the Hodge Laplacian, a higher-order Laplacian defined on simplicial complexes, encodes simplicial communities. We formulate an algorithm to extract simplicial communities (of arbitrary dimension). We apply this algorithm to simplicial complex benchmarks and to real higher-order network data including social networks and networks extracted using language or text processing tools. However, datasets of simplicial complexes are scarce, and for the vast majority of datasets that may involve higher-order interactions, only the set of pairwise interactions are available. Hence, we use known properties of the data to infer the most likely higher-order interactions. In other words, we introduce an inference method to predict the most likely simplicial complex given the community structure of its network skeleton. This method identifies as most likely the higher-order interactions inducing simplicial communities that maximize the adjusted mutual information measured with respect to ground-truth community structure. Finally, we consider higher-order networks constructed through thresholding the edge weights of collaboration networks (encoding only pairwise interactions) and provide an example of persistent simplicial communities that are sustained over a wide range of the threshold.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.104.064303 | DOI Listing |
Neural Netw
December 2024
Department of Earth Science and Engineering, Imperial College London, Prince Consort Road, London SW7 2BP, UK; Centre for AI-Physics Modelling, Imperial-X, White City Campus, Imperial College London, W12 7SL, UK.
Machine learning (ML) has benefited from both software and hardware advancements, leading to increasing interest in capitalising on ML throughout academia and industry. There have been efforts in the scientific computing community to leverage this development via implementing conventional partial differential equation (PDE) solvers with machine learning packages, most of which rely on structured spatial discretisation and fast convolution algorithms. However, unstructured meshes are favoured in problems with complex geometries.
View Article and Find Full Text PDFChaos
April 2024
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China.
Higher-order structures, consisting of more than two individuals, provide a new perspective to reveal the missed non-trivial characteristics under pairwise networks. Prior works have researched various higher-order networks, but research for evaluating the effects of higher-order structures on network functions is still scarce. In this paper, we propose a framework to quantify the effects of higher-order structures (e.
View Article and Find Full Text PDFPhys Rev E
September 2023
Center for Complex Systems & Dynamics, Indian Institute of Technology Madras, Chennai 600036, India.
The hidden geometry of simplicial complexes can influence the collective dynamics of nodes in different ways depending on the simplex-based interactions of various orders and competition between local and global structural features. We study a system of phase oscillators attached to nodes of four-dimensional simplicial complexes and interacting via positive/negative edges-based pairwise K_{1} and triangle-based triple K_{2}≥0 couplings. Three prototypal simplicial complexes are grown by aggregation of 5-cliques, controlled by the chemical affinity parameter ν, resulting in sparse, mixed, and compact architecture, all of which have 1-hyperbolic graphs but different spectral dimensions.
View Article and Find Full Text PDFChaos Solitons Fractals
November 2022
Department of Systems Science and Industrial Engineering, State University of New York, Binghamton, NY 13902, United States of America.
The ongoing COVID-19 pandemic has inflicted tremendous economic and societal losses. In the absence of pharmaceutical interventions, the population behavioral response, including situational awareness and adherence to non-pharmaceutical intervention policies, has a significant impact on contagion dynamics. Game-theoretic models have been used to reproduce the concurrent evolution of behavioral responses and disease contagion, and social networks are critical platforms on which behavior imitation between social contacts, even dispersed in distant communities, takes place.
View Article and Find Full Text PDFPhys Rev E
December 2021
School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom and The Alan Turing Institute, London, NW1 2DB, United Kingdom.
While the study of graphs has been very popular, simplicial complexes are relatively new in the network science community. Despite being a source of rich information, graphs are limited to pairwise interactions. However, several real-world networks such as social networks, neuronal networks, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!