Biofunctionalized Cellulose Nanofibrils Capable of Capture and Antiadhesion of Fimbriated .

ACS Appl Bio Mater

Biotechnology Branch, CCDC Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States.

Published: July 2019

In this study, naturally derived cellulose nanofibrils (CNFs), a renewable and easily modified nanomaterial with low cytotoxicity, were rendered bioactive via one-step functionalization with mannopyranoside (CNFs-mannose) for use as a new glyconanomaterial platform for control of bacterial pathogenesis. The recognition affinity of the bioactive surfaces toward fimbriated was assessed using genetically engineered strains as well as wild-type (WT) MG1655 bacteria. The results revealed high surface coverages of FimH+ (with overexpressed FimH) and WT bacteria on the films of CNFs-mannose due to specific interaction between prevalent mannose on nanofibrils and FimH receptors on fimbriae. The CNFs-mannose nanofibrils were capable of capturing from a liquid suspension, as demonstrated either by the nanofibril clusters or by the cellulose filter papers impregnated with CNFs-mannose. More importantly, CNFs-mannose efficiently inhibited adhesion of both FimH+ and WT to mannosylated surfaces even at a very low concentration, resulting in over 95% reduction of bacterial adhesion. Furthermore, the bioactive nanofibrils showed effective disruption of nonspecific binding of bacteria to abiotic surfaces in flow channel tests. These findings highlight the potential of cellulose nanofibrils as a biocompatible polyvalent nanoscale scaffold and exemplify sugar grafted nanofibrils as novel and effective tools in control of bacterial pathogenesis, bacterial removal, as well as in many other applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.9b00295DOI Listing

Publication Analysis

Top Keywords

cellulose nanofibrils
12
nanofibrils capable
8
control bacterial
8
bacterial pathogenesis
8
nanofibrils
7
cnfs-mannose
5
biofunctionalized cellulose
4
capable capture
4
capture antiadhesion
4
antiadhesion fimbriated
4

Similar Publications

Effects of Chemical Pretreatments of Wood Cellulose Nanofibrils on Protein Adsorption and Biological Outcomes.

ACS Appl Mater Interfaces

January 2025

Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway.

Wood-based nanocellulose is emerging as a promising nanomaterial in the field of tissue engineering due to its unique properties and versatile applications. Previously, we used TEMPO-mediated oxidation (TO) and carboxymethylation (CM) as chemical pretreatments prior to mechanical fibrillation of wood-based cellulose nanofibrils (CNFs) to produce scaffolds with different surface chemistries. The aim of the current study was to evaluate the effects of these chemical pretreatments on serum protein adsorption on 2D and 3D configurations of TO-CNF and CM-CNF and then to investigate their effects on cell adhesion, spreading, inflammatory mediator production , and the development of foreign body reaction (FBR) .

View Article and Find Full Text PDF

Microcapsules stabilized by cellulose nanofibrils/whey protein complexes and modified with cinnamaldehyde: Characterization and release properties.

Food Chem

January 2025

School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China. Electronic address:

This work aims to optimize encapsulation of Zanthoxylum schinifolium essential oil (ZSEO) in microcapsule to enhance its stability and slow-release capability. Herein, the ZSEO microcapsules stabilized by bacterial cellulose nanofibrils/whey protein isolate (BCNFs/WPI) complexes and modified by cinnamaldehyde (CA) were successfully prepared via spray drying. The microcapsules formed by 1.

View Article and Find Full Text PDF

A 3D Cell-Culture System That Uses Nano-Fibrillated Bacterial Cellulose to Prepare a Spherical Formulation of Culture Cells.

Biol Pharm Bull

January 2025

Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan.

A 3-dimensional (3D) cell culture is now being actively pursued to accomplish the in vivo-like cellular morphology and biological functions in cell culture. We recently obtained nano-fibrillated bacterial cellulose (NFBC). In this study, we developed a novel NFBC-based 3D cell-culture system, the OnGel method, and the Suspension method.

View Article and Find Full Text PDF

This study explored a facile method for converting macadamia nutshells into bio-based nanomaterials, including cellulose nanofibers (CNFs) and lignin nanoparticles (LNPs), through deep eutectic solvent (DES) pretreatment coupled with a nanofabrication strategy. Comparisons of the physicochemical, morphological, and structural properties of the CNF and LNPs produced through acidic choline chloride/oxalic acid dihydrate (ACDES) and alkaline KCO/glycerol DES (ALDES) pretreatments were conducted using SEM, TEM, FTIR, XRD, TGA, GPC and 2D NMR. The CNFs obtained from ACDES pretreatment (ACCNFs) exhibited uniform and long filament-like structures with shorter whisker-like nanocrystals.

View Article and Find Full Text PDF

Recent Advances in Paper Conservation Using Nanocellulose and Its Composites.

Molecules

January 2025

Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, 220 Handan Road, Shanghai 200433, China.

Paper-based cultural relics experience aging and deterioration during their long-term preservation, which poses a serious threat to their lifetime. The development of conservation materials with high compatibility and low intervention has been expected to extend the lifetime of paper artifacts. As a new type of biological macromolecule, nanocellulose has been extensively utilized in paper conservation, attributed to its excellent paper compatibility, high optical transparency, outstanding mechanical strength, and large specific surface area with abundant hydroxyl groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!