The aim of stem cell therapy is to repair damaged tissues. Some of the challenges facing its success include cell retention and survival at the wound site. While the retention of cells has been addressed by employing scaffolds, the survival of transplanted cells in the repair tissue is however low. It is hypothesized that the observed regeneration is more a result of migration of tissue repairing cells from adjoining tissues in response to paracrine factors secreted by implanted cells than by the implanted cells per se. In this study, we report the synthesis of a self-healing hybrid hydrogel that is injectable. The hybrid hydrogel was developed using the dynamic equilibrium of Schiff base linkage between the aldehyde groups on carboxymethyl cellulose dialdehyde (CMC-D) and amino groups on carboxymethyl chitosan (CMCh). The hydrogel stiffness and kinetics of gelation were observed to be modulated with different molecular weights of chitosan. studies demonstrated the cytocompatibility, hemocompatibility, and biodegradability of the hydrogel. The chemotactic, proliferative, and wound-healing response of cells to the paracrine factors secreted from the mesenchymal stem cell (MSC)-hydrogel composite confirmed the ability of the hydrogel to support the paracrine response of stem cells. Our results suggest that the synthesized hydrogel-MSC composite could serve as a potential scaffold for studying the response of cells to the paracrine factors released by the encapsulated cells as well as a cell delivery vehicle for applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.9b00074 | DOI Listing |
Int J Mol Sci
January 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia.
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon () was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Veterinary Medicine, Northeast Agricultural University, Harbin 150300, China.
The skin functions as the body's primary defense barrier; when compromised, it can lead to dehydration, infection, shock, or potentially life-threatening conditions. Miniature pigs exhibit skin characteristics and healing processes highly analogous to humans. Mesenchymal stem cells contribute to skin injury repair through a paracrine mechanism involving exosomes.
View Article and Find Full Text PDFBiomedicines
December 2024
ContendEd Net, 00166 Rome, Italy.
The vascular endothelial growth factor (VEGF) family includes key mediators of vasculogenesis and angiogenesis. VEGFs are secreted by various cells of epithelial and mesenchymal origin and by some immune cells in response to physiological and pathological stimuli. In addition, immune cells express VEGF receptors and/or co-receptors and can respond to VEGFs in an autocrine or paracrine manner.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
Lactate produced during ischemia-reperfusion injury is known to promote lactylation of proteins, which play controversial roles. By analyzing the lactylomes and proteomes of mouse myocardium during ischemia-reperfusion injury using mass spectrometry, we show that both Serpina3k protein expression and its lactylation at lysine 351 are increased upon reperfusion. Both Serpina3k and its human homolog, SERPINA3, are abundantly expressed in cardiac fibroblasts, but not in cardiomyocytes.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Shanghai Key Laboratory of Vascular Lesions and Remodeling, Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
Acute myocardial infarction (AMI) is associated with well-established metabolic risk factors, especially hyperlipidemia and obesity. Myocardial ischemia-reperfusion injury (mIRI) significantly offsets the therapeutic efficacy of revascularization. Previous studies indicated that disrupted lipid homeostasis can lead to lipid peroxidation damage and inflammation, yet the underlying mechanisms remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!