The potential of polymeric micelles constructed by coalescing natural and synthetic polymers for tuberculosis (TB) treatment was evaluated in this work. We designed a polymeric micelle to improve the delivery of anti-TB drugs (rifampicin [RF] and isoniazid [INH]). The polymeric core was synthesized in the following order: initially chitosan (CS) was grafted with polycaprolactone (PCL) to form CS-g-PCL followed by amide bond formation with maleic anhydride-isoniazid (MA-INH); finally, CS-g-PCL was conjugated with the MA-INH moiety to form the CS-g-PCL/MA-INH polymeric core. Another anti-TB drug, RF, was loaded onto CS-g-PCL/MA-INH through dialysis. The changes in the nature of functional groups and crystallinity were investigated by Fourier transform infrared spectroscopy and X-ray diffraction analysis, respectively. The shape and size of CS-g-PCL/MA-INH and RF-CS-g-PCL/MA-INH were analyzed by dynamic light scattering, scanning electron microscopy, and transmission electron microscopy. The cumulative drug release profiles were measured by UV-visible spectrophotometry and HPLC analysis. The antimicrobial activity of the loaded micelles was evaluated by finding the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bacterial cell rupture analyses. The nontoxic nature of the micelles was assessed by ex vivo studies on U937 and L929 cell lines and erythrocytes by performing an MTT assay, apoptosis assay, and hemolysis assay. Ex vivo cellular uptake and in vivo internalization of the INH- and RF-containing micelles were tested on U937 cells and zebrafish using fluorescence microscopy analysis. All of the observations indicate that the multi-TB drug-loaded polymeric micelle is a safe and effective system for the delivery of anti-TB drugs without affecting the mycobactericidal activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.9b00003 | DOI Listing |
Adv Sci (Weinh)
January 2025
Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.
The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, People's Republic of China.
Background: Cancer immunotherapy has achieved great success in breast cancer treatment in recent years. The Programmed Death-1 (PD-1) /Programmed Death-Ligand 1 (PD-L1) immune checkpoint pathway is among the most studied. BMS-1166, a PD-L1 inhibitor, can interfere with PD-1 and PD-L1 interaction.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway.
Due to the escalating threat of the pathogens' capability of quick adaptation to antibiotics, finding new alternatives is crucial. Although antimicrobial peptides (AMPs) are highly potent and effective, their therapeutic use is limited' as they are prone to enzymatic degradation, are cytotoxic and have low retention. To overcome these challenges, we investigate the complexation of the cationic AMP colistin with diblock copolymers poly(ethylene oxide)--poly(methacrylic acid) (PEO--PMAA) forming colistin-complex coacervate core micelles (colistin-C3Ms).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemistry, University of Hyderabad, Gachibowli-500046, Hyderabad, Telangana State, India.
The versatile nature of the urease enzyme makes it a valuable asset in biological and industrial contexts. The creation of bioconjugates using enzyme-polymer combinations has extended the shelf life and stability of urease. A triblock copolymer, PAM-co-PDPA-co-PMAA@urease (ADM@urease), was synthesized using acrylamide (AM), 2,5-dioxopyrrolidin-1-ylacrylate (DPA), methacrylic acid (MAA), and urease via the RAFT-Grafting-To polymerization method.
View Article and Find Full Text PDFActa Biomater
January 2025
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China. Electronic address:
Tumor hypoxia is one of key challenges in deep tumor photodynamic therapy (PDT), and how to fix this issue is attracting ongoing concerns worldwide. This work demonstrates dually fluorinated unimolecular micelles with desirable and stable oxygen-carrying capacity, high cellular penetration, and integrative type I & II PDT for deep hypoxic tumors. Dually fluorinated star copolymers with fluorinated phthalocyanines as the core are prepared through photoinitiated electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under irradiation with NIR LED light at room temperature, followed by assembly into unimolecular micelles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!