Quaternized chitosan as a biopolymer sanitizer for leafy vegetables: synthesis, characteristics, and traditional vs. dry nano-aerosol applications.

Food Chem

Agro-Nanotechnology and Advanced Materials Center, Department of Food Science, Agricultural Research Organization, The Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel. Electronic address:

Published: June 2022

A series of quaternary dimethyl-(alkyl)-ammonium chitosan derivatives (QACs) was synthesized and studied for physicochemical properties and bioactivity. The QACs tended to spontaneously self-assembly into nanoaggregates. Antimicrobial activity was examined in vitro on Gram-negative Escherichia coli (E. coli) and Gram-positive Listeria innocua (L. innocua) bacteria as well as phytopathogenic fungus Botrytis cinerea. The hexyl chain-substituted QAC-6 demonstrated the highest potency causing 3.0- and 4.5-log CFU mL-1 reduction of E. coli and L. innocua, respectively. QAC-6 was tested for antimicrobial activity on stainless steel coupons and fresh spinach leaves. A traditional 'wet' application (spray) and dry Engineered Water Nanostructure (EWNS) approach were used for spinach decontamination. With both approaches, significant reduction of microbial load on the treated produce was achieved. The wet application showed a greater reduction of microbial load, while the advantages of EWNS were reaching the antimicrobial effect with miniscule dose of active agent leaving treated surface visibly dry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2022.132056DOI Listing

Publication Analysis

Top Keywords

antimicrobial activity
8
reduction microbial
8
microbial load
8
quaternized chitosan
4
chitosan biopolymer
4
biopolymer sanitizer
4
sanitizer leafy
4
leafy vegetables
4
vegetables synthesis
4
synthesis characteristics
4

Similar Publications

Unfolding the Potential of Pyrrole- and Indole-Based Allylidene Hydrazine Carboximidamides as Antimicrobial Agents.

ACS Infect Dis

January 2025

Pharmaceutical Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Vidya Vihar 333031, (RJ) India.

Antimicrobial drug resistance is a significant global health challenge, causing hundreds of thousands of deaths annually and severely impacting healthcare systems worldwide. Several reported antimicrobial compounds have a guanidine motif, as the positive charge on guanidine promotes cell lysis. Therefore, pyrrole- and indole-based allylidene hydrazine carboximidamide derivatives with guanidine motifs are proposed as antimicrobial agents that mimic cationic antimicrobial peptides (CAMPs).

View Article and Find Full Text PDF

The Stenotrophomonas maltophilia L2 cephalosporinase is one of two beta-lactamases which afford S. maltophilia beta-lactam resistance. With the overuse of beta-lactams, selective pressures have contributed to the evolution of these proteins, generating proteins with an extended spectrum of activity.

View Article and Find Full Text PDF

Pharmacodynamics of NOSO-502 studied in vitro and in vivo: determination of the dominant pharmacodynamic index driver.

J Antimicrob Chemother

January 2025

Bristol Centre for Antimicrobial Research & Evaluation (BCARE), Infection Sciences, Southmead Hospital, Westbury-on-Trym, Bristol, UK.

Background: NOSO-5O2 is the first clinical candidate of a new antimicrobial class-the odilorhabdins. The pharmacodynamics of NOSO-502 were studied in vitro and in vivo to establish the pharmacodynamic index (PDI) driver.

Methods: A dilutional pharmacokinetic system was used for in vitro experiments.

View Article and Find Full Text PDF

Ceftobiprole was recently approved by the United States (US) Food and Drug Administration (FDA) for the treatment of adult patients with bacteremia, including right-side endocarditis, acute bacterial skin and skin structure infections, and community-acquired bacterial pneumonia in adults and pediatrics. Ceftobiprole is an advanced-generation cephalosporin approved in many countries for the treatment of adults with community-acquired pneumonia and hospital-acquired pneumonia, excluding ventilator-associated pneumonia. We evaluated the activities of ceftobiprole and comparators against methicillin-resistant (MRSA) and multidrug-resistant (MDR) clinical isolates.

View Article and Find Full Text PDF

The emergence of multidrug-resistant (MDR) pathogens, coupled with the limited effectiveness of existing antibiotics in eradicating biofilms, presents a significant threat to global health care. This critical situation underscores the urgent need for the discovery and development of antimicrobial agents. Recently, peptide-derived antimicrobial nanomaterials have shown promise in combating such infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!