A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The coupling interaction of soil organic carbon stock and water storage after vegetation restoration on the Loess Plateau, China. | LitMetric

The coupling interaction of soil organic carbon stock and water storage after vegetation restoration on the Loess Plateau, China.

J Environ Manage

School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China; Jixian Research Station for Forest Ecosystem, CFERN/CNERN, Beijing Forestry University, Beijing, 100083, China.

Published: March 2022

Vegetation restoration may increase the soil organic carbon stock (SOCS) but decrease the soil water storage (SWS) of terrestrial ecosystems in arid and semiarid regions. To guarantee the sustainability of restoration, it is critical to evaluate the coupling interaction of SOCS and SWS. Here, we examined the spatial distributions of SOCS and SWS across a 0-200 cm soil profile in a grassland, forestland and shrubland on the Loess Plateau and determined the driving factors that affected their variations. Our results showed that SOCS and SWS varied across the 0-200 cm soil profile and considerably accumulated in the deep soil layers (100-200 cm). In comparison to SOCS, SWS generally had higher relative benefits in most studied plant communities, which ensured sustainable restoration. In addition, land use played a less important role than local environmental conditions in determining the variations in SOCS and SWS. Specifically, the interaction between SOCS and SWS was mainly strong in the surface soil layers (0-20 cm). Topography was a predominant factor that affected SOCS and SWS in the deep soil layers (100-200 cm), while soil texture was a stable driving factor influencing their variations across the whole soil profile (0-200 cm). Given the low moisture consumption of grasslands and the lowest root mean square deviation (RMSD) of Hippophae rhamnoides, we proposed an advanced scenario for ecological restoration on the Loess Plateau: establishing reasonably large Hippophae rhamnoides patches with fewer edges in a contiguous grassland matrix. Furthermore, this scenario should be tailored to local environmental conditions, such as soil water, texture and topography, followed by natural vegetation succession.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.114481DOI Listing

Publication Analysis

Top Keywords

socs sws
28
loess plateau
12
soil profile
12
soil layers
12
soil
11
coupling interaction
8
soil organic
8
organic carbon
8
carbon stock
8
water storage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!