AI Article Synopsis

  • The study explores how visual stimuli trigger visual evoked potentials in EEG signals, highlighting challenges in interpreting these signals due to mixed power variations and phase-locking mechanisms.
  • The researchers propose that EEG data contains identifiable information about visual features, and they utilize advanced classification algorithms based on Riemannian geometry to analyze single-trial EEG data.
  • Results reveal high classification accuracy for distinguishing between different visual images using surface EEG (84% inter-subject and 93% intra-subject), though classification based on sLORETA estimates struggles to generalize across subjects, indicating potential limitations in the method.

Article Abstract

Objective: Different visual stimuli are classically used for triggering visual evoked potentials comprising well-defined components linked to the content of the displayed image. These evoked components result from the average of ongoing EEG signals in which additive and oscillatory mechanisms contribute to the component morphology. The evoked related potentials often resulted from a mixed situation (power variation and phase-locking) making basic and clinical interpretations difficult. Besides, the grand average methodology produced artificial constructs that do not reflect individual peculiarities. This motivated new approaches based on single-trial analysis as recently used in the brain-computer interface field.

Approach: We hypothesize that EEG signals may include specific information about the visual features of the displayed image and that such distinctive traits can be identified by state-of-the-art classification algorithms based on Riemannian geometry. The same classification algorithms are also applied to the dipole sources estimated by sLORETA.

Main Results And Significance: We show that our classification pipeline can effectively discriminate between the display of different visual items (Checkerboard versus 3D navigational image) in single EEG trials throughout multiple subjects. The present methodology reaches a single-trial classification accuracy of about 84% and 93% for inter-subject and intra-subject classification respectively using surface EEG. Interestingly, we note that the classification algorithms trained on sLORETA sources estimation fail to generalize among multiple subjects (63%), which may be due to either the average head model used by sLORETA or the subsequent spatial filtering failing to extract discriminative information, but reach an intra-subject classification accuracy of 82%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759639PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262417PLOS

Publication Analysis

Top Keywords

classification algorithms
12
surface eeg
8
evoked potentials
8
displayed image
8
eeg signals
8
multiple subjects
8
classification accuracy
8
intra-subject classification
8
classification
7
eeg
5

Similar Publications

Background: Cancer classification has consistently been a challenging problem, with the main difficulties being high-dimensional data and the collection of patient samples. Concretely, obtaining patient samples is a costly and resource-intensive process, and imbalances often exist between samples. Moreover, expression data is characterized by high dimensionality, small samples and high noise, which could easily lead to struggles such as dimensionality catastrophe and overfitting.

View Article and Find Full Text PDF

Background: The subcellular localization of mRNA plays a crucial role in gene expression regulation and various cellular processes. However, existing wet lab techniques like RNA-FISH are usually time-consuming, labor-intensive, and limited to specific tissue types. Researchers have developed several computational methods to predict mRNA subcellular localization to address this.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a neurologic disorder considered to cause discrepancies in physical activities, social skills, and cognition. There is no specific medicine for treating this disorder; early intervention is critical to improving brain function. Additionally, the lack of a clinical test for detecting ASD makes diagnosis challenging.

View Article and Find Full Text PDF

An automatic system for pathology classification in chest X-ray scans needs more than predictive performance, since providing explanations is deemed essential for fostering end-user trust, improving decision-making, and regulatory compliance. CLARE-XR is a novel methodology that, when presented with an X-ray image, identifies the associated pathologies and provides explanations based on the presentation of similar cases. The diagnosis is achieved using a regression model that maps an image into a 2D latent space containing the reference coordinates of all findings.

View Article and Find Full Text PDF

The aim of this research is to create an automated system for identifying soil microorganisms at the genera level based on raw microscopic images of monocultural colonies grown in laboratory environment. The examined genera are: Fusarium, Trichoderma, Verticillium, Purpureolicillium and Phytophthora. The proposed pipeline deals with unprocessed microscopic images, avoiding additional sample marking or coloration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!