Background: The understanding of longitudinal changes in the urinary microbiota of healthy women and its relation to intestinal microbiota is limited.
Methods: From a cohort of 15 premenopausal women without known urogenital disease or current symptoms, we collected catheter urine (CU), vaginal and periurethral swabs, and fecal samples on four visits over six months. Additionally, ten participants provided CU and midstream urine (MU) to assess comparability. Urine was subjected to expanded culture. 16S rRNA gene sequencing was performed on all urine, fecal, and selected vaginal and periurethral samples. Sequence reads were processed (DADA2 pipeline) and analyzed using QIIME 2 and R.
Results: Relative abundances of urinary microbiota were variable over 6-18 months. The degree of intraindividual variability of urinary microbiota was higher than that found in fecal samples. Still, nearly half of the observed beta diversity of all urine samples could be attributed to differences between volunteers (R2 = 0.48, p = 0.001). After stratification by volunteer, time since last sexual intercourse was shown to be a factor significantly contributing to beta diversity (R2 = 0.14, p = 0.001). We observed a close relatedness of urogenital microbial habitats and a clear distinction from intestinal microbiota in the overall betadiversity analysis. Microbiota compositions derived from MU differed only slightly from CU compositions. Within this analysis of low-biomass samples, we identified contaminating sequences potentially stemming from sequencing reagents.
Conclusions: Results from our longitudinal cohort study confirmed the presence of a rather variable individual urinary microbiota in premenopausal women. These findings from catheter urine complement previous observations on temporal dynamics in voided urine. The higher intraindividual variability of urinary microbiota as compared to fecal microbiota will be a challenge for future studies investigating associations with urogenital diseases and aiming at identifying pathogenic microbiota signatures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759677 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262095 | PLOS |
J Can Assoc Gastroenterol
February 2024
Department of Medicine, Division of Gastroenterology, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
The pathogenesis of Crohn's disease (CD) remains unknown. The current working theory is that genetic susceptibility influences host-microbe interactions, resulting in chronic inflammation. Case-control studies fail to explain the triggers or pathogenesis of the disease, notably due to confounding factors in patients with established disease.
View Article and Find Full Text PDFACS Environ Au
January 2025
Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
Organic micropollutants, including pharmaceuticals, personal care products, pesticides, and food additives, are widespread in the environment, causing potentially toxic effects. Human waste is a direct source of micropollutants, with the majority of pharmaceuticals being excreted through urine. Urine contains its own microbiota with the potential to catalyze micropollutant biotransformations.
View Article and Find Full Text PDFEur Urol Focus
January 2025
Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA; Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:
After identifying a urinary microbiota, new insights have emerged into how urinary tract infections (UTIs) develop and recur in women. This review explores factors influencing the urinary microbiome, and its role in UTI susceptibility and recurrence. Age, menopausal status, estrogen, and prior UTIs can impact the urinary microbiome significantly, with estrogen promoting predominance of beneficial Lactobacillus species in women.
View Article and Find Full Text PDFAm J Obstet Gynecol
January 2025
Nantes University, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.
Background: A subgroup of patients with chronic pelvic pain (CPP) exhibit organ sensitization, whose origin and mechanism remains largely unknown. Changes in microbiota composition in pelvic organs have been found to be associated with various pelvic pathological conditions. Therefore, a comprehensive analysis of the gut and genito-urinary microbiota composition and interactions in women with CPP may be key to understanding their involvement in the sensitization processes.
View Article and Find Full Text PDFActa Diabetol
January 2025
Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
Objective: The objective is to investigate the differences in urinary organic acid (OA) profiles and metabolism between healthy control (HC) pregnant women and those with gestational diabetes mellitus (GDM) during the second trimester and third trimester of pregnancy.
Methods: A total of 66 HC pregnant women and 32 pregnant women with GDM were assessed for 107 hydrophilic metabolites in urine samples collected during the second and third trimester of pregnancy using tandem mass spectrometry. The urine OA profiles for each group were obtained, and metabolomic analysis and discussion were conducted.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!