Multi-contrast magnetic resonance imaging can provide comprehensive information for clinical diagnosis. However, multi-contrast imaging suffers from long acquisition time, which makes it inhibitive for daily clinical practice. Subsampling k-space is one of the main methods to speed up scan time. Missing k-space samples will lead to inevitable serious artifacts and noise. Considering the assumption that different contrast modalities share some mutual information, it may be possible to exploit this redundancy to accelerate multi-contrast imaging acquisition. Recently, generative adversarial network shows superior performance in image reconstruction and synthesis. Some studies based on k-space reconstruction also exhibit superior performance over conventional state-of-art method. In this study, we propose a cross-domain two-stage generative adversarial network for multi-contrast images reconstruction based on prior full-sampled contrast and undersampled information. The new approach integrates reconstruction and synthesis, which estimates and completes the missing k-space and then refines in image space. It takes one fully-sampled contrast modality data and highly undersampled data from several other modalities as input, and outputs high quality images for each contrast simultaneously. The network is trained and tested on a public brain dataset from healthy subjects. Quantitative comparisons against baseline clearly indicate that the proposed method can effectively reconstruct undersampled images. Even under high acceleration, the network still can recover texture details and reduce artifacts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2022.3143104 | DOI Listing |
Sci Rep
January 2025
School of Mechanical, Electrical, and Information Engineering, Putian University, Putian, 351100, China.
Noise label learning has attracted considerable attention owing to its ability to leverage large amounts of inexpensive and imprecise data. Sharpness aware minimization (SAM) has shown effective improvements in the generalization performance in the presence of noisy labels by introducing adversarial weight perturbations in the model parameter space. However, our experimental observations have shown that the SAM generalization bottleneck primarily stems from the difficulty of finding the correct adversarial perturbation amidst the noisy data.
View Article and Find Full Text PDFSci Rep
January 2025
NeMO Lab, ASST GOM Niguarda Cà Granda Hospital, Milan, Italy.
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that can result in a progressive loss of speech due to bulbar dysfunction, which can have significant negative impact on the patient's mental well-being. Alternative Augmentative Communication (AAC) strategies based on synthetic voices have been shown to assist patients in maintaining communication and improving their Quality of Life (QoL). However, such synthetic voices are often perceived as impersonal and fail to capture the unique voice and identity of the patient.
View Article and Find Full Text PDFInterdiscip Sci
January 2025
College of Science, Dalian Jiaotong University, Dalian, 116028, China.
Accurate prediction of drug-drug interaction (DDI) is essential to improve clinical efficacy, avoid adverse effects of drug combination therapy, and enhance drug safety. Recently researchers have developed several computer-aided methods for DDI prediction. However, these methods lack the substructural features that are critical to drug interactions and are not effective in generalizing across domains and different distribution data.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science, Faculty of Computers and Informatics, Kafrelsheikh University, Kafrelsheikh, Egypt.
Missing pixel imputation is a critical task in image processing, where the presence of high percentages of missing pixels can significantly degrade the performance of downstream tasks such as image segmentation and object detection. This paper introduces a novel approach for missing pixel imputation based on Generative Adversarial Networks (GANs). We propose a new GAN architecture incorporating an identity module and a sperm motility-inspired heuristic during filtration to optimize the selection of pixels used in reconstructing missing data.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science and Information Systems, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, 500078, India.
The motivation for this article stems from the fact that medical image security is crucial for maintaining patient confidentiality and protecting against unauthorized access or manipulation. This paper presents a novel encryption technique that integrates the Deep Convolutional Generative Adversarial Networks (DCGAN) and Virtual Planet Domain (VPD) approach to enhance the protection of medical images. The method uses a Deep Learning (DL) framework to generate a decoy image, which forms the basis for generating encryption keys using a timestamp, nonce, and 1-D Exponential Chebyshev map (1-DEC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!