In this paper, we address the Clifford-valued distributed optimization subject to linear equality and inequality constraints. The objective function of the optimization problems is composed of the sum of convex functions defined in the Clifford domain. Based on the generalized Clifford gradient, a system of multiple Clifford-valued recurrent neural networks (RNNs) is proposed for solving the distributed optimization problems. Each Clifford-valued RNN minimizes a local objective function individually, with local interactions with others. The convergence of the neural system is rigorously proved based on the Lyapunov theory. Two illustrative examples are delineated to demonstrate the viability of the results in this article.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2021.3139865DOI Listing

Publication Analysis

Top Keywords

distributed optimization
12
clifford-valued distributed
8
recurrent neural
8
neural networks
8
objective function
8
optimization problems
8
clifford-valued
4
optimization
4
optimization based
4
based recurrent
4

Similar Publications

This study investigates the implementation of collaborative route planning between trucks and drones within rural logistics to improve distribution efficiency and service quality. The paper commences with an analysis of the unique characteristics and challenges inherent in rural logistics, emphasizing the limitations of traditional methods while highlighting the advantages of integrating truck and drone technologies. It proceeds to review the current state of development for these two technologies and presents case studies that illustrate their application in rural logistics.

View Article and Find Full Text PDF

Optimizing demand response and load balancing in smart EV charging networks using AI integrated blockchain framework.

Sci Rep

December 2024

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Kyiv, Ukraine.

The integration of Electric Vehicles (EVs) into power grids introduces several critical challenges, such as limited scalability, inefficiencies in real-time demand management, and significant data privacy and security vulnerabilities within centralized architectures. Furthermore, the increasing demand for decentralized systems necessitates robust solutions to handle the growing volume of EVs while ensuring grid stability and optimizing energy utilization. To address these challenges, this paper presents the Demand Response and Load Balancing using Artificial intelligence (DR-LB-AI) framework.

View Article and Find Full Text PDF

The contributed absorber design in graphene addition with the displacement of three materials for resonator design in Aluminum (Al), the middle substrate position with Titanium nitride (TiN), and the ground layer deposition by Iron (Fe) respectively. For the absorption validation highlight, the best four absorption wavelengths (µm) of 0.29, 0.

View Article and Find Full Text PDF

Unbalanced power systems cause transformers and generators to overheat, system losses to climb, and protective devices to trigger. An optimization-based control technique for distributed generators (DG) balances demand and improves power quality in three imbalanced distribution systems with 10, 13, and 37 nodes. Each system phase has its own DG.

View Article and Find Full Text PDF

This paper presented the preparation, characterization, and adsorption properties of Brazil nut shell activated carbon for catechol removal from aqueous solutions. The equilibrium adsorption of catechol molecules on this activated was experimentally quantified at pH 6 and temperatures ranging from 25 to 55 °C, and at 25 °C and pH ranging from 6 to 10. These results were utilized to elucidate the role of surface functionalities through statistical physics calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!