Correlated-electron systems have long been an important platform for various interesting phenomena and fundamental questions in condensed matter physics. As a pivotal process in these systems, transitions have been suggested as a key factor toward realizing optical spin control in two-dimensional (2D) magnets. However, it remains unclear how excitations behave in quasi-2D systems with strong electronic correlation and spin-charge coupling. Here, we present a systematic electronic Raman spectroscopy investigation on transitions in a 2D antiferromagnet—NiPS, from bulk to atomically thin samples. Two electronic Raman modes originating from the scattering of incident photons with electrons in Ni ions are observed at ~1.0 eV. This electronic process persists down to trilayer flakes and exhibits insensitivity to the spin ordering of NiPS. Our study demonstrates the utility of electronic Raman scattering in investigating the unique electronic structure and its coupling to magnetism in correlated 2D magnets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759744 | PMC |
http://dx.doi.org/10.1126/sciadv.abl7707 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic. Electronic address:
Water is a greatly convenient solvent in Raman spectroscopy. However, non-additive effects sometimes make its signal difficult to subtract. To understand these effects, spectra for clusters of model ions, including transition metal complexes and water molecules, were simulated and analyzed.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Chemistry, Institut - Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, Montréal, Quebec H3C 3J7, Canada.
Myocardial infarction (MI) is the leading cause of death and disability worldwide. It occurs when a thrombus forms after an atherosclerotic plaque bursts, obstructing blood flow to the heart. Prompt and accurate diagnosis is crucial for improving patient survival.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India. Electronic address:
Sialic acid, a negatively charged nine-carbon monosaccharide, is mainly located at the terminal end of glycan chains on glycoproteins and glycolipids of cell surface and most secreted proteins. Elevated levels of sialylated glycans have been known as a hallmark in numerous cancers. As a result, sialic acid acts as a useful and accessible cancer biomarker for early cancer detection and monitoring the disease development during cancer treatment which is crucial in elevating the survival rate.
View Article and Find Full Text PDFAquat Toxicol
December 2024
Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 PO Box 34, Muscat, Oman; UNESCO Chair in Marine Biotechnology, CEMB, Sultan Qaboos University, Al Khoud 123, PO Box 50, Muscat, Oman. Electronic address:
This study investigated microplastic pollution in the large mud snail Terebralia palustris (Linnaeus, 1767) (Gastropoda: Potamididae) inhabiting the Avicennia marina mangrove ecosystems along the Sea of Oman. A modified digestion protocol, combining two methods, was employed to improve the detection of microplastics within the snail tissue. Results indicated that 50 % of the examined snails contained microplastics, with significant variability observed among different lagoons.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
High-temperature graphitization of graphene oxide (GO) is a crucial step for enhancing interlayer stacking and repairing the in-plane defects of reduced graphene oxide (rGO) films. However, the fine control of the structural repair and reducing the energy consumption in thermal treatment remain challenges. In this study, ab-initio molecular dynamics simulations combined with experiments are used to investigate the structural evolution of rGO upon thermal annealing, with or without the presence of single-layer graphene (SLG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!