The structural and mechanical properties of low-dimensional nanostructured metals have been attracting tremendous interest in the fast-growing fields of nanosciences and nanotechnologies. However, it still remains a challenge today to develop strong yet ductile low-dimensional metals that can support the further development of nanodevices. Here, through the polymer-assisted assembly of gold nanocrystals, we successfully fabricated the freestanding, ultrathin gold nanomaterial. Unlike conventional bulk gold or other low-dimensional gold nanostructures (i.e., nanowires and nanosheets), these gold nanosheets are composed of highly distorted gold nanocrystals that are 3-5 nm in size, which are joined together through nanosized amorphous carbon interphases. As a result, the gold nanosheets exhibit superb strength (up to 1.2 GPa), excellent ductility (>50%), and superior fracture toughness (>100 J/m), outperforming various gold nanostructures hitherto reported.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.1c04553 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!