A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recognition of a linear source contamination based on a mixed-integer stacked chaos gate recurrent unit neural network-hybrid sparrow search algorithm. | LitMetric

Recognition of a linear source contamination based on a mixed-integer stacked chaos gate recurrent unit neural network-hybrid sparrow search algorithm.

Environ Sci Pollut Res Int

Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.

Published: May 2022

Groundwater contamination source recognition involves the recovery of contamination source time series release histories from observation data. In the present study, a linear source contamination recognition task was addressed. When using a simulation-optimization inverse framework to solve the recognition task, high calculated expense and high dimensional search space always hinder the task efficiency. Moreover, traditional surrogate methods face obstacle of handling with time-sequence data. Therefore, a novel stacked chaos gate recurrent unit (SCGRU) neural network was proposed as a surrogate model to precisely emulate the sequence to sequence mapping relationship of a high computational running simulation model. To address the challenge of high dimensional search, a mixed-integer programming strategy was employed to reduce the dimension of unknown variables. Furthermore, a hybrid sparrow search algorithm (HSSA) was implemented to alleviate being trapped into local optimum. In particular, the proposed SCGRU-HSSA framework was utilized to determine the length and release intensities during the stress period of a linear source. Based on the results obtained, the following conclusions were derived: (1) SCGRU can replace the origin simulation model with high accuracy and fast running speed; (2) when using chaos sine mapping and a Cauchy mutation strategy, the SSA escaped from the local optimum, improving the search efficiency of the recognition task; and (3) SCGRU-HSSA methodology is stable and reliable in recognizing features of linear source contamination.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-18538-yDOI Listing

Publication Analysis

Top Keywords

linear source
16
source contamination
12
recognition task
12
stacked chaos
8
chaos gate
8
gate recurrent
8
recurrent unit
8
sparrow search
8
search algorithm
8
contamination source
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!