Not only visual interpretation for lesion detection, staging, and characterization, but also quantitative treatment response assessment are key roles for F-FDG PET in oncology. In multicenter oncology PET studies, image quality standardization and SUV harmonization are essential to obtain reliable study outcomes. Standards for image quality and SUV harmonization range should be regularly updated according to progress in scanner performance. Accordingly, the first aim of this study was to propose new image quality reference levels to ensure small lesion detectability. The second aim was to propose a new SUV harmonization range and an image noise criterion to minimize the inter-scanner and intra-scanner SUV variabilities. We collected a total of 37 patterns of images from 23 recent PET/CT scanner models using the NEMA NU2 image quality phantom. PET images with various acquisition durations of 30-300 s and 1800 s were analyzed visually and quantitatively to derive visual detectability scores of the 10-mm-diameter hot sphere, noise-equivalent count (NEC), 10-mm sphere contrast (Q), background variability (N), contrast-to-noise ratio (Q/N), image noise level (CV), and SUVmax and SUVpeak for hot spheres (10-37 mm diameters). We calculated a reference level for each image quality metric, so that the 10-mm sphere can be visually detected. The SUV harmonization range and the image noise criterion were proposed with consideration of overshoot due to point-spread function (PSF) reconstruction. We proposed image quality reference levels as follows: Q/N ≥ 2.5 and CV ≤ 14.1%. The 10th-90th percentiles in the SUV distributions were defined as the new SUV harmonization range. CV ≤ 10% was proposed as the image noise criterion, because the intra-scanner SUV variability significantly depended on CV. We proposed new image quality reference levels to ensure small lesion detectability. A new SUV harmonization range (in which PSF reconstruction is applicable) and the image noise criterion were also proposed for minimizing the SUV variabilities. Our proposed new standards will facilitate image quality standardization and SUV harmonization of multicenter oncology PET studies. The reliability of multicenter oncology PET studies will be improved by satisfying the new standards.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12149-021-01709-1DOI Listing

Publication Analysis

Top Keywords

image quality
36
suv harmonization
32
harmonization range
24
image noise
20
multicenter oncology
16
oncology pet
16
pet studies
16
noise criterion
16
image
14
suv
12

Similar Publications

Magnetic Resonance Imaging (MRI) safety is a critical concern in the Asia-Oceania region, as it is elsewhere in the world, due to the unique and complex MRI environment that demands attention. This call-for-action outlines ten critical steps to enhance MRI safety and promote a culture of responsibility and accountability in the Asia-Oceania region. Key focus areas include strengthening education and expertise, improving quality assurance, fostering collaboration, increasing public awareness, and establishing national safety boards.

View Article and Find Full Text PDF

Male infertility is a common complication of diabetes. Diabetes leads to the decrease of zinc (Zn) content, which is a necessary trace element to maintain the normal structure and function of reproductive organs and spermatogenesis. The purpose of this study was to investigate the effect of metformin combined with zinc on testis and sperm in diabetic mice.

View Article and Find Full Text PDF

New Numerical Inversion Method to Improve the Spatial Accuracy of Elemental Imaging for LA-ICP-MS.

Anal Chem

January 2025

State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, PR China.

The elemental imaging of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) provides spatial information on elements and therefore can further investigate the growth or evolution processes of an analyte. However, the accurate determination of spatial information is limited by the decoupling between the elemental distribution and mass spectrometry signals. This phenomenon, which is more distinct when high-diffusion ablation cells are used, arises from the overlap of ablation and the transport dispersion of aerosols.

View Article and Find Full Text PDF

Proton magnetic resonance spectroscopy (MRS) offers a non-invasive, repeatable, and reproducible method for in vivo metabolite profiling of the brain and other tissues. However, metabolite fingerprinting by MRS requires high signal-to-noise ratios for accurate metabolite quantification, which has traditionally been limited to large volumes of interest, compromising spatial fidelity. In this study, we introduce a new optimized pipeline that combines LASER MRS acquisition at 11.

View Article and Find Full Text PDF

The development of deep learning algorithms has transformed medical image analysis, especially in brain tumor recognition. This research introduces a robust automatic microbrain tumor identification method utilizing the VGG16 deep learning model. Microscopy magnetic resonance imaging (MMRI) scans extract detailed features, providing multi-modal insights.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!