Electrochemical sensors using ionic liquids as electrolytes for oxygen detection are now getting more and more attention. Recently, an ionic liquid combined with an electrochemically active catalyst system has become popular for boosting the sensing performance of oxygen sensors. In this work, the imidazolyl-based ionic liquid 1-butyl-2,3-dimethylimidazole bis((trifluoromethyl)sulfonyl)imide [Bmmim][TFSI] is first prepared by a facile two-step method. Subsequently, a transition metal and N-codoped porous carbon oxygen reduction electrochemical catalyst Cu-N/C is synthesized by calcining the Cu-doped ZIF-8 precursor and then blending it in different ratios with the ionic liquid [Bmmim][TFSI] as composite electrolytes for oxygen detection. The composite electrolyte Cu-N/C/[Bmmim][TFSI] exhibits increased responses in cyclic voltammetry (CV) and chronoamperometry (CA) relative to that of the pure ionic liquid. Furthermore, the CV and CA data show that 6% Cu-N/C/[Bmmim][TFSI] has the optimum oxygen sensing response with an enhanced reduction peak current, a sensitivity of 0.1678 μA/[% O] and a good linear fitting coefficient of 0.9991. In conclusion, the results confirm the success of using Cu-N/C as an electrochemical catalyst composed of the Cu-N/C/[Bmmim][TFSI] electrolyte for improving the responsivity, stability and sensitivity towards a wide range of oxygen concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1nr06758c | DOI Listing |
Int J Pharm
January 2025
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 51006 China. Electronic address:
Androgenic alopecia (AGA), the most prevalent type of progressive hair loss, currently lacks an effective topical treatment regimen. In this study, we synthesized an ionic liquid (IL) to co-solubilize minoxidil (MXD) and finasteride (FIN) and subsequently formulated them into an in situ thermosensitive ionic liquid/cyclodextrin/poloxamer hydrogel (ICPG), termed M + F@ICPG. M + F@ICPG was developed for the transdermal co-delivery of these two drugs, aiming to provide a multipath therapeutic approach for AGA while avoiding the adverse effects commonly associated with oral FIN and topical MXD tincture.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11, 89081 Ulm, Germany.
ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.
View Article and Find Full Text PDFPharmaceutics
December 2024
Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan.
: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) with a similar structure to Azone, consisting of ε-caprolactam and myristic acid, as an enhancer candidate that maintains the high skin-penetration-enhancing effect of Azone with low skin irritation. In the present study, fatty acids with different carbon numbers (caprylic acid: C8, capric acid: C10, lauric acid: C12, myristic acid: C14, and oleic acid: C18:1) were selected and used with ε-caprolactam to prepare various IL-Azones in the search for a more effective IL-Azone.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
This study explores the effects of a subcritical seawater treatment (SST) on buckwheat waste (BW), and the use of the hydrolysate as a liquid fertilizer to improve the growth of lettuce ( L.). Three temperature treatments (110 °C, 170 °C, 230 °C) were used for the SST, and the ionic composition in the seawater achieved the depolymerization and degradation of BW.
View Article and Find Full Text PDFMolecules
January 2025
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
Solid polymer electrolytes (SPEs) have attracted much attention due to their excellent flexibility, strong interfacial adhesion, and good processibility. However, the poor interfacial contact between the separate solid polymer electrolytes and electrodes leads to large interfacial impedance and, thus, hinders Li transport. In this work, an ionic liquid-modified comb-like crosslinked network composite solid-state electrolyte with an integrated electrolyte/cathode structure is prepared by in situ ultraviolet (UV) photopolymerization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!