Unconventional superconductors are of high interest due to their rich physics, a topical example being topological edge states associated with p-wave superconductivity. A practical obstacle in studying such systems is the very low critical temperature T_{c} that is required to realize a p-wave superconducting phase in a material. We predict that the T_{c} of an intrinsic p-wave superconductor can be significantly enhanced by coupling to a conventional s-wave or d-wave superconductor with a higher critical temperature via an atomically thin ferromagnetic (F) layer. We show that this T_{c} boost is tunable via the direction of the magnetization in F. Moreover, we show that the enhancement in T_{c} can also be achieved using the Zeeman effect of an external magnetic field. Our findings provide a way to increase T_{c} in p-wave superconductors in a controllable way and make the exotic physics associated with such materials more easily accessible experimentally.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.127.267001DOI Listing

Publication Analysis

Top Keywords

p-wave superconductivity
8
coupling conventional
8
critical temperature
8
p-wave
5
t_{c}
5
controllable enhancement
4
enhancement p-wave
4
superconductivity magnetic
4
magnetic coupling
4
conventional superconductor
4

Similar Publications

The thermoelectric properties of hybrid systems based on a single-level quantum dot coupled to a normal-metal/half-metallic lead and attached to a topological superconductor wire are investigated. The topological superconductor wire is modeled by a spinless p-wave superconductor which hosts both a Majorana bound state at its extremity and above gap quasiparticle excitations. The main interest of our investigation is to study the interplay of sub-gap and single-particle tunneling processes and their contributions to the thermoelectric response of the considered system.

View Article and Find Full Text PDF

The quest for anisotropic superconductors has been a long-standing pursuit due to their potential applications in quantum computing. In this regard, experimentally, d-wave and anisotropic s-wave superconducting order parameters are predominantly observed, while p-wave superconductors remain largely elusive. Achieving p-wave superconductivity in topological phases is highly desirable, as it is considered suitable for creating topologically protected qubits.

View Article and Find Full Text PDF

Unconventional superconductivity, where electron pairing does not involve electron-phonon interactions, is often attributed to magnetic correlations in a material. Well known examples include high-T cuprates and uranium-based heavy fermion superconductors. Less explored are unconventional superconductors with strong spin-orbit coupling, where interactions between spin-polarised electrons and external magnetic field can result in multiple superconducting phases and field-induced transitions between them, a rare phenomenon in the superconducting state.

View Article and Find Full Text PDF

Topological fingerprints in Liouvillian gaps.

Phys Rev E

November 2024

School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin D04 C932, Ireland.

Topology in many-body physics usually emerges as a feature of equilibrium quantum states. We show that topological fingerprints can also appear in the relaxation rates of open quantum systems. To demonstrate this we consider one of the simplest models that has two topologically distinct phases in its ground state: the Kitaev chain model for the p-wave superconductor.

View Article and Find Full Text PDF

Probing -wave superconductivity in UTe via point-contact junctions.

NPJ Quantum Mater

November 2024

Department of Physics, Maryland Quantum Materials Center, University of Maryland, College Park, MD USA.

Article Synopsis
  • Uranium ditelluride (UTe) is considered a top candidate for a -wave superconductor in bulk form, prompting detailed spectroscopic research.
  • Conductance measurements were taken through point-contact junctions at low temperatures (down to 250 mK) and high magnetic fields (up to 18 T), utilizing the Blonder-Tinkham-Klapwijk model for analysis.
  • The findings indicate a dominant -wave gap function with an amplitude of 0.26 ± 0.06 meV, supporting the idea of spin-triplet pairing in UTe's superconducting state.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!