Determination of nuclear moments for many nuclei relies on the computation of hyperfine constants, with theoretical uncertainties directly affecting the resulting uncertainties of the nuclear moments. In this work, we improve the precision of such a method by including for the first time an iterative solution of equations for the core triple cluster amplitudes into the relativistic coupled-cluster method, with large-scale complete basis sets. We carried out calculations of the energies and magnetic dipole and electric quadrupole hyperfine structure constants for the low-lying states of ^{229}Th^{3+} in the framework of such a relativistic coupled-cluster single double triple method. We present a detailed study of various corrections to all calculated properties. Using the theory results and experimental data, we found the nuclear magnetic dipole and electric quadrupole moments to be μ=0.366(6)μ_{N} and Q=3.11(2) eb, respectively, and reduce the uncertainty of the quadrupole moment by a factor of 3. The Bohr-Weisskopf effect of the finite nuclear magnetization is investigated, with bounds placed on the deviation of the magnetization distribution from the uniform one.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.127.253001 | DOI Listing |
Anal Methods
January 2025
Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, SC, 88035-972, Brazil.
A new analytical method was developed for the determination of 14 multiclass emerging organic contaminants in surface waters using LC-MS, and Dispersive Liquid-Liquid Microextraction (DLLME) for extraction. Different Natural Deep Eutectic Solvents (NADESs) composed of terpenes and organic acids were tested as extraction solvents and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Hydrogen Nuclear Magnetic Resonance Spectroscopy (H-NMR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), density, and viscosity, eliminating the need to use traditional chlorinated solvents. NADES produced with butyric acid and thymol showed the best results and was selected for application for the first time in the extraction of emerging organic contaminants of different classes in water samples.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No 10, Bandung 40132, Jawa Barat, Indonesia.
The magnetic, electronic, and topological properties of GdPtBi were systematically investigated using first-principles density functional theory (DFT) calculations. Various magnetic configurations were examined, including ferromagnetic (FM) and antiferromagnetic (AFM) states, with particular focus on AFM states where the Gd magnetic moments align either parallel (AFM) or perpendicular (AFM) to the [111] crystal direction. For AFM, the in-plane angles were varied at = 0°, 15°, and 30° (denoted as AFM, AFM, and AFM, respectively).
View Article and Find Full Text PDFArch Gynecol Obstet
January 2025
Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
Introduction: Choosing a medical specialty is a pivotal moment in a physician's career, shaped by personal interests, clinical experiences, and professional interactions. Obstetrics and gynecology (OB-GYN) offers a unique blend of surgical and medical care focused on women's health. Given the growing demand for OB-GYN specialists, understanding the factors that influence students' decisions is essential for workforce planning.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.
Phys Rev Lett
December 2024
Center for Nuclear Theory, Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA.
We introduce a string-based parametrization for nucleon quark and gluon generalized parton distributions (GPDs) that is valid for all skewness. Our approach leverages conformal moments, representing them as the sum of spin-j nucleon A-form factor and skewness-dependent spin-j nucleon D-form factor, derived from t-channel string exchange in AdS spaces consistent with Lorentz invariance and unitarity. This model-independent framework, satisfying the polynomiality condition due to Lorentz invariance, uses Mellin moments from empirical data to estimate these form factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!