Binding of Sulfate-Terminated Surfactants with Different Alkyl Chain Lengths to Viologen Sites Covalently Embedded in the Interior of a Self-Assembled Monolayer on a Au Electrode.

Langmuir

Department of Advanced Technology and Science for Sustainable Development, Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan.

Published: January 2022

We investigated the binding of anionic surfactants of lower concentrations than their critical micelle concentrations (cmcs) to the cationic redox-active viologen site in the interior of a self-assembled monolayer (SAM) on a polycrystalline Au electrode. We embedded the viologen site in the midway of the alkyl chain to facilitate the ion-pairing binding, which depends on the oxidation state of the viologen. We found that the binding of anionic surfactants and inorganic anions causes a negative shift of the formal potential of the redox couple of the viologen radical cation/viologen dication in line with the binding equilibrium. In contrast, the anion binding was weak and trivial when viologens are located at the SAM surface, indicative of the enhancement of the binding by the electrostatic interaction in the microenvironment with the low dielectric constant. The negative shift of the formal potential of viologen in the interior was greater for the surfactants with longer alkyl chain lengths, indicative of the efficacy of the alkyl chain-chain interaction. The chain-length-dependent potential shift followed the linear Traube rule but with a smaller slope than that in the original rule. We also demonstrated that the conjugated layer of the viologen SAM with dodecyl sulfate at a lower concentration than the cmc completely blocks the direct electron transfer (ET) from the Au electrode to solution-phase Fe(CN) but allows mediated ET around the formal potential of the viologen.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.1c02376DOI Listing

Publication Analysis

Top Keywords

alkyl chain
12
formal potential
12
chain lengths
8
viologen
8
interior self-assembled
8
self-assembled monolayer
8
binding anionic
8
anionic surfactants
8
viologen site
8
negative shift
8

Similar Publications

Understanding the interplay between the molecular structure of the ionic liquid (IL) subunit, the resulting nanostructure and ion transport in polymerized ionic liquids (PILs) is necessary for the realization of high-performance solid-state electrolytes required in various advanced applications. Herein, we present a detailed structural characterization of a recently synthesized series of acrylate-based PIL homopolymers and networks with imidazolium cations and chloride anions with varying alkyl spacer and terminal group lengths designed for organic solid-state batteries based on X-ray scattering. The impact of the concentrations of both the crosslinker and added tetrabutylammonium chloride (TBACl) conducting salt on the structural characteristics is also investigated.

View Article and Find Full Text PDF

The ion binding to the lipid/water interface can substantially influence the structural, functional, and dynamic properties of the cell membrane. Despite extensive research on ion-lipid interactions, the specific effects of ion binding on the polarity and hydration at the lipid/water interface remain poorly understood. This study explores the influence of three biologically relevant divalent cations─Mg, Ca, and Zn─on the depth-dependent interfacial polarity and hydration of zwitterionic DPPC lipid in its gel phase at room temperature.

View Article and Find Full Text PDF

This study focuses on two types of phosphonium cation-based ionic liquids (P-ILs) with different alkyl chains: triethylalkylphosphonium (P222R) and tributylalkylphosphonium (P444R) cations. Broadband dielectric spectroscopy showed that the translational motion of the ions accelerated with an increasing number of alkyl chains by coupling with their rotational motion in both P-ILs. Raman spectroscopy revealed that P222R cations, despite dielectric similarities to P444R cations, can form all-trans conformations and cation-rich nanodomains because they have a relatively polar, short alkyl chain moiety with a central P atom and less-polar alkyl chains than those of P444R cations.

View Article and Find Full Text PDF

METTL3-Mediated m6A Modification of ISG15 mRNA Regulates Doxorubicin-Induced Endothelial Cell Apoptosis.

J Cell Mol Med

January 2025

Zhengzhou Key Laboratory of Cardiovascular Aging, Henan Province Key Laboratory for Prevention and Treatment of Coronary Heart Disease, National Health Commission key Laboratory of Cardiovascular Regenerative Medicine, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, China.

N6-adenosine methylation (m6A) of RNA is involved in the regulation of various diseases. However, its role in chemotherapy-related vascular endothelial injury has not yet been elucidated. We found that methyltransferase-like 3 (METTL3) expression was significantly reduced during doxorubicin (DOX)-induced apoptosis of vascular endothelial cells both in vivo and in vitro, and that silencing of METTL3 further intensified this process.

View Article and Find Full Text PDF

PRMT1-Mediated Arginine Methylation Promotes Corneal Epithelial Wound Healing via Epigenetic Regulation of ANXA3.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.

Purpose: Protein arginine methyltransferase 1 (PRMT1) is an integral constituent of numerous cellular processes. However, its role in corneal epithelial wound healing (CEWH) remains unclear. This study investigates the impact of PRMT1 on cellular mechanisms underlying corneal epithelial repair and its potential to improve wound healing outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!