Biomacromolecules
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
Published: March 2022
Photoresponsive supramolecular hydrogels based on the host-guest interaction between cyclodextrin (CD) and azobenzene (Azo) are highly favored in "on-demand" biological applications. Nevertheless, most Azo/CD-based hydrogels are UV-responsive, exhibiting poor tissue penetrability and potential cytotoxicity; more importantly, the complete gel-sol transition under irradiation makes intelligent systems unstable. Here, we report a red-light-responsive semiconvertible hydrogel based on tetra-ortho-methoxy-substituted Azo (mAzo)- and CD-functionalized hyaluronic acid (HA). By integrating red-shifted-photoisomerized mAzo with HA, a biocompatible 625 nm-light-responsive polymeric guest with strengthened hydrogen bonding and weakened photoisomerization was synthesized. Upon alternating irradiation, mAzo-HA/CD-HA hydrogels obtained here exhibited reversible mechanical and structural dynamics, while avoiding complete gel-sol transition. This improved semiconvertibility remedies the lack of macroscopic resilience for dynamic system so as to endow supramolecular hydrogels with spatial-temporal mechanics, self-healing, and adhesion. Together with excellent cytocompatibility and manufacturability, these hydrogels show potential advantages in tissue engineering, especially for the regeneration of functional multi-tissue complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.1c01395 | DOI Listing |
J Mater Chem B
March 2025
Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France.
-Alkyl-galactonamides, which are small synthetic molecules derived from galactose, self-assemble to give fibrous hydrogels. These molecules are biocompatible and, in a previous study, the cell culture of human neural stem cells was performed for 7 days on a gel of -heptyl-D-galactonamide. With the objective of broadening the scope of these molecules as scaffolds for cell culture, in the present study, the culture of primary human dermal fibroblasts has been carried out on -nonyl-D-galactonamide hydrogels.
View Article and Find Full Text PDFAdv Mater
March 2025
Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
Mechanical expansion and contraction of pores within photosynthetic organisms regulate a series of processes that are necessary to manage light absorption, control gas exchange, and regulate water loss. These pores, known as stoma, allow the plant to maximize photosynthetic output depending on environmental conditions such as light intensity, humidity, and temperature by actively changing the size of the stomal opening. Despite advances in artificial photosynthetic systems, little is known about the effect of such mechanical actuation in synthetic materials where chemical reactions occur.
View Article and Find Full Text PDFOf the 1.5 million emergency room visits each year in the United States due to flexor tendon injuries in the hand, over 30-40% result in peritendinous adhesions which can limit range of motion (ROM) and severely impact an individual's quality of life. Adhesions are fibrous scar-like tissues which can form between adjacent tissues in the body in response to injury, inflammation, or during normal healing following surgery.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China. Electronic address:
Managing open skin wounds remains a notable challenge in clinical practice, with wound dressings gradually becoming an essential strategy for such treatment. To effectively regulate the wound healing microenvironment, we developed an antibiotic-free nanocomposite hydrogel by combining guanosine-based supramolecular G-quadruplexes (G4), angiogenic deferoxamine (DFO), konjac glucomannan (KGM), and zinc ions through a one-pot mixing strategy. The borate esters in G4 endow the hydrogel with a strong radical-scavenging ability.
View Article and Find Full Text PDFJ Nanobiotechnology
March 2025
Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province, 110000, China.
Intervertebral disc degeneration (IDD) is a degenerative spinal condition characterized by disc structural damage, narrowing of joint spaces, and nerve root compression, significantly reducing patients' quality of life. To address this challenge, a novel therapeutic strategy was developed using cellulose supramolecular hydrogel as a carrier to deliver IL4I1-modified MΦ membrane biomimetic nanoparticles (CHG@IL4I1-MNPs) to target tissues. This hydrogel exhibits excellent biocompatibility and mechanical properties while enabling sustained drug release in the degenerative disc microenvironment, enhancing therapeutic outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.