Asymmetric Catalytic Rearrangements with α-Diazocarbonyl Compounds.

Acc Chem Res

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.

Published: February 2022

α-Diazocarbonyl compounds serve as nucleophiles, dipoles, carbene precursors, and rare electrophiles, enabling a vast array of organic transformations under the influence of metal catalysts. Among them, rearrangement processes are attractive and provide straightforward and efficient accesses to one-carbon extension adducts or heteroatom-containing molecules. The reactions occur upon the release of dinitrogen after nucleophilic addition or before ylide formation. Although significant progress has been made for these two types of rearrangement reactions, the issue of enantiocontrol is challenging because the final optically enriched products are generated via multistep transformations and the inherent spacial arrangement of the intermediates has more or less influence on the regio- and enantioselectivity.In this Account, we collected several rearrangements of α-diazocarbonyl compounds, showcasing the efficient catalysts and tailored strategies for tackling enantioselective varieties of these two types of rearrangement reactions. Our research group initiated the catalytic asymmetric reactions of α-diazocarbonyl compounds during the development of chiral Feng ,'-dioxide-metal complex catalysts and others. As a kind of useful chiral Lewis acid catalyst chiral ,'-dioxide-metal complexes are favorable for the activation of various carbonyl compounds, accelerating the diastereo- and enantioselective nucleophilic addition of α-diazoesters and the sequential rearrangements in either an intermolecular or intramolecular manner. Aldehydes, acyclic and cyclic ketone derivatives, and α,β-unsaturated ketones could participate in efficient asymmetric homologation reactions, and an obvious ligand-acceleration effect is observed in these processes. For example, the Roskamp-Feng reaction of aldehydes gives optically active β-ketoesters through a H-shift, overwhelming the aryl group shift or oxygen attack. The shift preference and enantiocontrol in the homologation of acyclic and cyclic ketone derivatives could be under excellent control of the chiral catalysts. An unusual electrophilic α-amination of aryl/alkyl ketones and even a complicated homologation/dyotropic rearrangement/interconversion/[3 + 2] cycloaddition cascade used to construct dimeric polycyclic compounds were discovered as a result of the selection of chiral ligands and additives. On the basis of the understanding of the interaction of the functional group with ,'-dioxide-metal complexes in catalysis and the key enantio-determining issues in ylide-based rearrangements, we designed new α-diazocarbonyl compounds by introducing a pyrazole-1-carboxyl group as the acceptor unit, which could benefit the formation of both carbenoid species and the chiral catalyst-bound ylides to deliver stereoselectivity. Taking advantage of Ni(II) or Co(II) complexes of Feng ,'-dioxide ligands, we realized several kinds of enantioselective [2,3]-sigmatropic rearrangements, such as the Doyle-Kirmse reaction with allylic sulfides or selenides, [2,3]-Stevens rearrangements of vinyl-substituted α-diazo pyrazoleamides with thioacetates, Sommelet-Hauser rearrangements of aryl-substituted α-diazo pyrazoleamides with thioamides, and thio-Claisen rearrangements of 2-thio-indoles as well. Moreover, this strategy was shown to be applicable to highly γ-selective and enantioselective insertion into N-H bonds of secondary amines with vinyl-substituted α-diazo pyrazoleamides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.1c00664DOI Listing

Publication Analysis

Top Keywords

α-diazocarbonyl compounds
20
α-diazo pyrazoleamides
12
rearrangements
8
rearrangements α-diazocarbonyl
8
nucleophilic addition
8
types rearrangement
8
rearrangement reactions
8
'-dioxide-metal complexes
8
acyclic cyclic
8
cyclic ketone
8

Similar Publications

Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.

View Article and Find Full Text PDF

A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.

View Article and Find Full Text PDF

Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.

View Article and Find Full Text PDF

TP53 mutations and MDM2 polymorphisms in breast and ovarian cancers: amelioration by drugs and natural compounds.

Clin Transl Oncol

January 2025

Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.

Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression.

View Article and Find Full Text PDF

Due to the diverse chemical and physical properties of functional groups, mild and controllable ligation methods are often required to construct complex drugs and functional materials. To make diverse sets of products with tunable physicochemical properties, it is also useful to employ complimentary ligation methods that adopt the same starting materials. Here, we disclose the efficient and modular synthesis of amides or thioamides through the chemical ligation of acyl silanes with amines, simply by turning a light on or off.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!