A gold nanoparticle-quenched graphene quantum dot-based aptasensor was developed to perform clustered detection of 11 phthalic acid esters (PAEs). The binding of the target PAEs to the aptasensor frees the graphene quantum dots that are otherwise quenched by the carrier gold nanoparticle. The resultant fluorescence upon excitation is proportional to the number of freed graphene quantum dots and hence the target PAE concentration. The synthesis of the proposed aptasensor was first verified step-by-step via FT-IR measurement, scanning electron microscopy, and fluorescence measurement. Selectivity was evaluated for individual and combined target PAEs and compared against seven non-PAE endocrine disrupting compounds. The proposed aptasensor successfully quantified 11 PAEs in test samples with varying concentrations of 0.001-50 ng PAEs/mL and demonstrated a limit of detection of ∼4 pg./mL. Finally, the AuNP-gQD aptasensor was employed to detect multiple combinations of commonly regulated PAEs (DBP, DIBP, DEHP, and BBP). The recovery (%) for all four PAEs combination in environmentally relevant concentrations of 0.5, 1, 5, and 10 ng/mL were ∼100%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c21756 | DOI Listing |
Phys Rev Lett
December 2024
Instituto de Ciencia de Materiales de Madrid, CSIC, E-28049 Madrid, Spain.
We address the precise determination of the phase diagram of magic angle twisted bilayer graphene under hydrostatic pressure within a self-consistent Hartree-Fock method in real space, including all the remote bands of the system. We further present a novel algorithm that maps the full real-space density matrix to a 4×4 density matrix based on a SU(4) symmetry of sublattice and valley degrees of freedom. We find a quantum critical point between a nematic and a Kekulé phase, and show also that our microscopic approach displays a strong particle-hole asymmetry in the weak coupling regime.
View Article and Find Full Text PDFThis study investigates (EIG) in a nanohybrid configuration involving a semiconductor quantum dot (SQD) and a core-shell bimetallic nanoparticle coated with graphene. The goal is to optimize interactions between plasmons and excitons. This is achieved by utilizing nanoparticles covered with graphene, which enhances control over surface plasmons.
View Article and Find Full Text PDFSci Rep
January 2025
IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598, USA.
The development of high-brightness electron sources is critical to state-of-the-art electron accelerator applications like X-ray free electron laser (XFEL) and ultra-fast electron microscopy. Cesium telluride is chosen as the electron source material for multiple cutting-edge XFEL facilities worldwide. This manuscript presents the first demonstration of the growth of highly crystalized and epitaxial cesium telluride thin films on 4H-SiC and graphene/4H-SiC substrates with ultrasmooth film surfaces.
View Article and Find Full Text PDFChemphyschem
January 2025
Western University, Chemistry, 1151 Richmond St, N6A5B7, London, CANADA.
Graphene quantum dots (GQDs) have emerged as promising materials for electrochemiluminescence (ECL) applications due to their unique optical and electronic properties. In this study, GQDs were synthesized via electrochemical exfoliation of graphite in a constant current density mode, enabling scalable production with controlled size and surface functionalization. GQDs-4 and GQDs-20, synthesized at applied current densities of 4 mA/cm2 and 20 mA/cm2 to the graphite electrode, respectively, were investigated on roles of surface states and exciplex dominated aggregation-induced emission (AIE) in their ECL performance.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Physics, University of Tartu, EE-50411 Tartu, Estonia.
Low-power gas sensors that can be used in IoT (Internet of Things) systems, consumer devices, and point-of-care devices will enable new applications in environmental monitoring and health protection. We fabricated a monolithic chemiresistive gas sensor by integrating a micro-lightplate with a 2D sensing material composed of single-layer graphene and monolayer-thick TiO. Applying ultraviolet (380 nm) light with quantum energy above the TiO bandgap effectively enhanced the sensor responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!