Mesenchymal stem cells (MSCs) have broad-based therapeutic potential in regenerative medicine. However, a major barrier to their clinical utility is that MSCs from different tissues are highly variable in their regenerative properties. In this study, we defined the molecular and phenotypic identities of different MSC populations from different osseous tissue sites of different patients and, additionally, determined their respective regenerative properties. MSCs from 6 patients were isolated from either bone marrow of the iliac crest (BMSCs) or alveolar bone tissue (aBMSCs), and flow cytometry revealed that regardless of the tissue source, MSC immunotypes had the same expression of MSC markers CD73, CD90, and CD105. However, transcriptomic analyses revealed 589 genes differentially expressed (DE) between BMSCs and aBMSCs, including eightfold higher levels of bone morphogenetic protein 4 (BMP-4) in aBMSCs. In striking contrast, gene expression of MSCs derived from the same tissue, but between different patients (i.e., BMSCs to BMSCs, aBMSCs to aBMSCs), showed only 38 DE BMSC genes and 51 DE aBMSC genes. A protein array showed that aBMSC and BMSC produced equivalent levels of angiogenic cytokines; however, when placed in angiogenesis model systems, aBMSCs induced significantly more capillaries in vitro and in vivo. Finally, cell transplantation of MSCS into osseous defects showed that the bone regenerative capacity of aBMSCs was significantly greater than that of BMSCs. This study is the first to link the molecular, phenotypic, and regenerative properties of different MSCs from different patients and provides novel insights toward MSC differences based on the osseous tissue origin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354673PMC
http://dx.doi.org/10.1007/s00441-021-03563-zDOI Listing

Publication Analysis

Top Keywords

regenerative properties
16
mesenchymal stem
8
stem cells
8
molecular phenotypic
8
osseous tissue
8
properties mscs
8
mscs patients
8
bmscs abmscs
8
abmscs
7
regenerative
6

Similar Publications

Unlabelled: The scientific and practical interest in studying the biomechanical characteristics of the lens capsule, on the one hand, is associated with its anatomical significance in modern microinvasive phaco surgery, and on the other hand, with investigation of the mechanisms of lens curvature changes during accommodation. Selective study of the biomechanical properties of the lens capsule aims to identify characteristics of various regions and surfaces of the capsule.

Purpose: This study is a comparative analysis of age-related changes in the biomechanical properties of the anterior (AC) and posterior (PC) lens capsules in humans.

View Article and Find Full Text PDF

Background: Canine adipose-derived mesenchymal stem cells (cAD-MSCs) demonstrate promising tissue repair and regeneration capabilities. However, the procurement and preservation of these cells or their secreted factors for therapeutic applications pose a risk of viral contamination, and the consequences for cAD-MSCs remain unexplored. Consequently, this research sought to assess the impact of canid alphaherpesvirus 1 (CHV) on the functional attributes of cAD-MSCs, including gene expression profiles and secretome composition.

View Article and Find Full Text PDF

Tetramethylpyrazine attenuates the cancer stem cell like-properties and doxorubicin resistance by targeting HMGCR in breast cancer.

Phytomedicine

December 2024

Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, PR China. Electronic address:

Background: Tetramethylpyrazine (TMP), a key bioactive constituent derived from Ligusticum wallichii Franchat, has demonstrated efficacy in mitigating multidrug resistance (MDR) in human breast cancer (BC) cells. However, the precise mechanisms underlying its action remain poorly understood.

Purpose: Cancer stem cells (CSCs) are widely recognized as the primary contributors to MDR.

View Article and Find Full Text PDF

Mandibular bone defect reconstruction remains a significant challenge for surgeons worldwide. Among multiple biodegradable biopolymers, allogeneic bone scaffolds derived from human sources have been used as an alternative to autologous bone grafts, providing optimal conditions for cell recruitment, adhesion, and proliferation and demonstrating significant osteogenic properties. This study aims to investigate the bone microstructure of the human scapula as a source for allogeneic bone scaffold fabrication for mandibular tissue engineering purposes.

View Article and Find Full Text PDF

The dehydrated human amnion-chorion membranes (dHACMs) derived from the human placenta have emerged as a promising biomaterial for dental pulp regeneration owing to their unique biological and structural properties. The purpose of this review is to explore the potentials of dHACMs in dental pulp tissue engineering, focusing on their ability to promote cellular proliferation, differentiation, angiogenesis, and neurogenesis. dHACMs are rich in extracellular matrix proteins and growth factors such as TGF-β1, FGF2, and VEGF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!