Wheat, durum wheat, is the first cereal cultivated and consumed in Tunisia. Because the dominance of calcareous soils in its agroecological systems, known by their low availability of iron (Fe) inducing Fe chlorosis and limiting crop production, its yield remains low. Therefore, the search for tolerant genotypes is always current. In this context, the physiological behavior of six Tunisian genotypes of durum wheat (salim, karim, razek, khiar, inrat100, and maali) cultivated on calcareous and fertile soils for 2 months in a pot experiment was investigated. A greenhouse was used to conduct experiments under natural light. Plant growth, SPAD index, Fe nutrition, Fe distribution, and photosynthesis were monitored and used to evaluate and discriminate their respective physiological responses. On calcareous soil, results revealed reduced plant growth, active Fe, SPAD index, and net photosynthesis. Genotypic differences in the response of wheat to calcareous-induced Fe deficiency were observed and allowed to classify the genotypes Salim and Karim as relatively tolerant. These genotypes expressed Fe translocation capacity (FeT) up to 3 times, Fe use efficiency for photosynthesis (FeUEAn) up to 1.6 times, and chlorophyll use efficiency for photosynthesis (ChlUEAn) up to 3.5 times greater than that expressed by the other genotypes, particularly inrat100 and maali. Thus, the relative tolerance of Salim and Karim is the result of the high ability of Fe uptake and translocation to shoots to support chlorophyll biosynthesis, photosynthesis, and plant growth as well as an important Fe and chlorophyll use efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8743360 | PMC |
http://dx.doi.org/10.1002/pld3.377 | DOI Listing |
Plant Foods Hum Nutr
January 2025
Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana- Iztapalapa, Apartado Postal 55-534, Iztapalapa, CDMX, 09340, Mexico.
This study aimed to explore the effects of egg albumin protein addition (5, 15 and 20 g/100 g db) on the textural characteristics, as well as in the in vitro digestibility of protein and starch of wheat bread. Egg albumin addition resulted in smoother bread loaves as compared to traditional wheat bread. Reduced hardness and increased cohesiveness were correlated to the protein secondary structure, mainly with the content of β-sheets.
View Article and Find Full Text PDFWater Environ Res
January 2025
Agrobiology Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Lithuania.
A comparative pot study was performed to assess the toxic effects of copper (Cu) and/or zinc (Zn) contaminated wastewater (WW) irrigation on the growth, physiology, and element concentration of wheat grown for two months. The treatments included irrigation with uncontaminated wastewater (WW) as control, Cu-contaminated WW (CuWW), Zn-contaminated WW (ZnWW), and Cu + Zn contaminated WW (CuZnWW) in a completely randomized design. Compared to ZnWW, irrigation with CuWW or CuZnWW had severe effects on growth, physiology, and mineral absorption by wheat.
View Article and Find Full Text PDFPeerJ
January 2025
Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.
Wheat, a staple food crop globally, faces the challenges of limited water resources and sustainable soil management practices. The pivotal elements of the current study include the integration of activated acacia biochar (AAB) in wheat cultivation under varying irrigation regimes (IR). A field trial was conducted in the Botanical Garden, University of the Punjab, Lahore during 2023-2024, designed as a split-split-plot arrangement with RCBD comprising three AAB levels (0T, 5T, and 10T, T = tons per hectare) three wheat cultivars (Dilkash-2020, Akbar-2019, and FSD-08) receiving five IR levels (100%, 80%, 70%, 60%, and 50% field capacity).
View Article and Find Full Text PDFFront Plant Sci
January 2025
College of Agriculture, Shihezi University, Shihezi, China.
Introduction: In order to elucidate the physiological mechanism of post-flowering assimilate transport regulating the formation of yields in arid regions and to provide technological support for further water-saving and high yields in the wheat region in Xinjiang, we conducted a study on the effects of different fertility periods and different degrees of drought and re-watering on the post-flowering dry matter accumulation and transport of spring wheat and the characteristics of grain filling.
Methods: In two spring wheat growing seasons in 2023 and 2024, a split-zone design was used, with the drought-sensitive variety Xinchun 22 (XC22) and drought-tolerant variety Xinchun 6 (XC6) as the main zones and a fully irrigated control during the reproductive period [CK, 75%~80% field capacity (FC)], with mild drought at the tillering stage (T1, 60%~65% FC), moderate drought at the tillering stage (T2, 45%~50% FC), mild drought at the jointing stage (J1, 60%~65% FC), and mild drought at the jointing stage (J2, 45%~50% FC) as the sub-zones.
Results: The dry matter accumulation of the aboveground parts of wheat (stem sheaths, leaves, and spikes), the transfer rate and contribution rate of nutrient organs, the maximum filling rate (V), and the mean filling rate (V) increased significantly after re-watering in the T1 treatment, and decreased with the deepening of the degree of water stress.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!