Sludge generation from wastewater treatment plants in Uruguay has increased in recent years. Agricultural soils may be a final destination. A greenhouse experiment was conducted to quantify the effect of this sludge on 1) plant biomass production and nutrient concentration of sorghum ( var. vulgare); 2) the chemical properties of amended soils; and 3) assess whether heavy metal concentrations in sludge are appropriate according to environmental regulations. Two soils (S1 and S2) were amended with pure sludge (PS) and limed sludge (LS), with low dose (LD) of 16.0 and 17.3 Mg ha and high dose (HD) of 32.0 and 34.6 Mg ha, respectively. Sludge treatments increased plants' nutrient absorption and dry matter production. The LS treatments incremented plant biomass production, depending on soil pH and nutrient availability. The effect of sludge treatments on elemental concentration in aboveground biomass depended on the element, treatments, and soil type. Mineralized nitrogen (N) and plant available phosphorus (P-Bray 1) values increased with sludge addition without exceeding Uruguay's critical soil level of P-Bray 1 for the sorghum crop. The PS did not increase metal concentration in soils. The LS slightly decreased soil Pb and slightly increased Cr and Zn soil concentration; levels were according to Uruguayan environmental guidelines. Therefore, agriculture soils are a viable final destination for PS and LS. Land applied sludge has acceptable levels of metals and promotes crop development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741466 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2021.e08658 | DOI Listing |
J Plant Physiol
January 2025
Department of Ecology, Faculty of Sciences, University of Málaga, Málaga, Spain.
Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed.
View Article and Find Full Text PDFACS Nano
January 2025
Power Battery & Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Zn metal anodes in mildly acidic electrolytes usually suffer from a series of problems, including parasitic dendrite growth and severe side reactions, significantly limiting the Zn utilization efficiency and cycling life. A deep understanding of the Zn stripping/plating process is essential to obtain high-efficiency and long-life Zn metal anodes. Here, the factors affecting the Zn stripping/plating process are revealed, suggesting that thermodynamic uniformity in bulk structures promotes an orderly Zn stripping process, and a fast kinetic diffusion rate on the Zn surface facilitates uniform Zn deposition.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China.
Despite the potential to significantly enhance the economic viability of biomass-based platforms through the selective conversion of glycerol to 1,3-dihydroxyacetone (DHA), a formidable challenge persists in simultaneously achieving high catalytic activity and stability along this reaction pathway. Herein, we have devised a strategic approach to manipulate the interfacial integration within composite catalysts to address the performance trade-off. Through the modulation of the composite process involving a bio-templated porous ZSM-5 zeolite platform (bZ) and an Au/CuZnO catalyst, three distinct interfacial bonding modes were achieved: physical milling, encapsulation by zeolite, and growth on zeolite.
View Article and Find Full Text PDFCurr Environ Health Rep
January 2025
Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, 104 Mason Farm Rd., Chapel Hill, NC, 27514, USA.
Purpose Of Review: A major contributor to household air pollution (HAP) in sub-Saharan Africa (SSA) is unclean cooking fuel. Improved cookstove technology (ICT) interventions have been promoted as a solution, but their impacts on health are unclear. Our aim is to conduct a systematic review to explore the impacts of ICT interventions on health outcomes in SSA.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Department of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan.
To enhance plant biomass production under low nitrogen conditions, we employed a method to artificially and temporarily accumulate the bacterial second messenger, guanosine tetraphosphate (ppGpp), to modify plastidial or mitochondrial metabolism. Specifically, we fused a chloroplast or mitochondrial transit-peptide to the N-terminus of the bacterial ppGpp synthase YjbM, which was conditionally expressed by an estrogen-inducible promoter in . The resulting recombinant plants exhibited estrogen-dependent ppGpp accumulation in chloroplasts or mitochondria and showed reduced fresh weight compared to wild type (WT) plants when grown on agar-solidified plates containing a certain amount of estrogen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!