Non-small cell lung cancer (NSCLC) is often characterized by an underlying mutation in the epidermal growth factor receptor (EGFR), contributing to aggressive metastatic disease. Methyl 2-cyano-3,11-dioxo-18beta-olean-1,12-dien-30-oate (CDODA-Me), a glycyrrhetinic acid derivative, reportedly improves the therapeutic response to erlotinib (ERL), an EGFR tyrosine kinase inhibitor. In the present study, we performed a series of studies to demonstrate the efficacy of CDODA-Me (2 μM) in sensitizing HCC827R (ERL-resistant) cells to ERL. Herein, we first established the selectivity of ERL-induced drug resistance in the HCC827R cells, which was sensitized when ERL was combined with CDODA-Me (2 μM), shifting the IC from 23.48 μM to 5.46 μM. Subsequently, whole transcriptomic microarray expression data demonstrated that the combination of ERL + CDODA-Me elicited 210 downregulated genes (0.44% of the whole transcriptome (WT)) and 174 upregulated genes (0.36% of the WT), of which approximately 80% were unique to the ERL + CDODA-Me group. Synergistic effects centered on losses to cell cycle progression transcripts, a reduction of minichromosome maintenance complex components (MCM2-7), all key components of the Cdc45·MCM2-7GINS (CMG) complex, and replicative helicases; these effects were tantamount to the upregulation of processes associated with the nuclear factor erythroid 2 like 2 translational response to oxidative stress, including sulfiredoxin 1, heme oxygenase 1, and stress-induced growth inhibitor 1. Collectively, these findings indicate that the synergistic therapeutic effects of ERL + CDODA-Me on resistant NSCLC cells are mediated via the inhibition of mitosis and induction of oxidative stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8740161 | PMC |
http://dx.doi.org/10.1016/j.jpha.2021.06.002 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen 52074, Germany.
Postnatal establishment of enteric metabolic, host-microbial and immune homeostasis is the result of precisely timed and tightly regulated developmental and adaptive processes. Here, we show that infection with the invasive enteropathogen Typhimurium results in accelerated maturation of the neonatal epithelium with premature appearance of antimicrobial, metabolic, developmental, and regenerative features of the adult tissue. Using conditional Myd88-deficient mice, we identify the critical contribution of immune cell-derived mediators.
View Article and Find Full Text PDFJ Occup Environ Med
January 2025
Department of Biostatistics, Florida International University, Miami, FL, United States.
Objective: To assess factors influencing Neonatal Respiratory Distress Syndrome (RDS) risk, incorporating maternal demographics, behaviors, medical conditions, pregnancy-related factors, and PM2.5 speciation pollutants exposures.
Methods: Using Florida de-identified birth records, logistic regression analyses were conducted to assess associations between maternal exposure to PM2.
ACS Nano
January 2025
Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.
Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China.
Far-red phosphors have emerged as a desirable research hotspot owing to their critical role in promoting plant growth. Especially, Eu ions typically present the D→F (J = 0, 1, 2, 3, 4) transitions, which overlap with the far-red light required for plant photosynthesis. However, achieving high-efficiency far-red emission of Eu remains challenging due to weak D→F transition and concentration quenching.
View Article and Find Full Text PDFChemistry
January 2025
Wuhan University of Technology - Mafangshan Campus: Wuhan University of Technology, School of Material Science and Engineeringl, CHINA.
NiFe layered double hydroxide (LDH) currently are the most efficient catalysts for the oxygen evolution reaction (OER) in alkaline environments. However, the development of high-performance low cost OER electrocatalysts using straightforward strategies remains a significant challenge. In this study, we describe an innovative microbial mineralization-based method for in situ-induced preparation of NiFe LDH nanosheets loaded on nickel foam and demonstrate that this material serves as an efficient oxygen evolution electrocatalyst.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!