Candidate Genes of Allergic Dermatitis Are Associated with Immune Response.

J Healthc Eng

Department of Traditional Chinese Medicine Surgery, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330000, Jiangxi, China.

Published: May 2022

Allergic dermatitis (AD) is a common and burdensome inflammatory skin disease, and diagnosis is challenging. This study was conducted to identify candidate genes for AD diagnosis and underlying molecular mechanisms. Gene expression profiles were obtained from datasets GSE121212, GSE130588, and GSE157194. Use differential analysis to identify differentially expressed genes (DEGs) between AD and control. Use enrichment analysis to identify potential molecular dysregulation mechanisms. Comprehensive least absolute shrinkage and selection operator (LASSO) logistic regression, receiver operator characteristic (ROC) curve, and logistic regression analysis are used to identify candidate genes. In addition, ssGSEA and ImmPort database were used to identify AD-related immune response abnormalities. In this study, a total of 60 common genes were identified. Enrichment analysis found that these genes are mainly involved in Th17 cell immune and complement and coagulation cascades. LASSO regression analysis identified 18 feature genes, and screened genes with AUC >0.75 were selected as candidate genes. Finally, PLA2G4D, IFI6, AGR3, IGFL1, SPRR3, ATP13A5, SERPINB13, KRT16, HAS3, and CH25H were recognized as candidate genes and may be able to diagnose AD. PLA2G4D, CH25H, and IFI6 may be risk factors for AD based on logistic analysis. Furthermore, we identified the abnormalities of immune response activation in AD patients. Interestingly, PLA2G4D, CH25H, and IFI6 had positive correlations with immune cells and signaling pathways. PLA2G4D, CH25H, and IFI6 may be candidate diagnostic genes for AD. This may be related to their promotion of abnormal immune activation, especially Th17 cell immune.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752225PMC
http://dx.doi.org/10.1155/2022/8745722DOI Listing

Publication Analysis

Top Keywords

candidate genes
20
immune response
12
analysis identify
12
pla2g4d ch25h
12
ch25h ifi6
12
genes
10
allergic dermatitis
8
identify candidate
8
enrichment analysis
8
logistic regression
8

Similar Publications

, a medicinal herbaceous plant documented in the Chinese Pharmacopoeia, is a promising candidate for research into plant-derived pharmaceuticals. However, the study of newly emerging viruses that threaten the cultivation of remains limited. In this study, plants exhibiting symptoms such as leaf yellowing, mottled leaves, and vein chlorosis were collected and subjected to RNA sequencing to identify potential viral pathogens.

View Article and Find Full Text PDF

Vesicular Stomatitis Virus (VSV) has emerged as a promising candidate for various clinical applications, including vaccine development, virus pseudotyping, and gene delivery. Its broad host range, ease of propagation, and lack of pre-existing immunity in humans make it ideal for therapeutic use. VSV's potential as an oncolytic virus has garnered attention; however, resistance to VSV-mediated oncolysis has been observed in some cell lines and tumor types, limiting its effectiveness.

View Article and Find Full Text PDF

Maize lethal necrosis (MLN) is a significant threat to food security in Sub-Saharan Africa (SSA), with limited commercial inbred lines displaying tolerance. This study analyzed the transcriptomes of four commercially used maize inbred lines and a non-adapted inbred line, all with varying response levels to MLN. RNA-Seq revealed differentially expressed genes in response to infection by maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV), the causative agents of MLN.

View Article and Find Full Text PDF

Faba bean ( L.) is a valuable ingredient in plant-based foods such as meat and dairy analogues. However, its typical taste and aroma are considered off-flavours in these food applications, representing a bottleneck during processing.

View Article and Find Full Text PDF

Analysis of the CHS Gene Family Reveals Its Functional Responses to Hormones, Salinity, and Drought Stress in Moso Bamboo ().

Plants (Basel)

January 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

Chalcone synthase (CHS), the first key structural enzyme in the flavonoid biosynthesis pathway, plays a crucial role in regulating plant responses to abiotic stresses and hormone signaling. However, its molecular functions remain largely unknown in , which is one of the most economically and ecologically important bamboo species and the most widely distributed one in China. This study identified 17 genes in and classified them into seven subgroups, showing a closer evolutionary relationship to genes from rice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!