Breast cancer incidence has been rising steadily during the past few decades. It is the second leading cause of death in women. If it is diagnosed early, there is a good possibility of recovery. Mammography is proven to be an excellent screening technique for breast tumor diagnosis, but its detection and classification in mammograms remain a significant challenge. Previous studies' major limitation is an increase in false positive ratio (FPR) and false negative ratio (FNR), as well as a drop in Matthews correlation coefficient (MCC) value. A model that can lower FPR and FNR while increasing MCC value is required. To overcome prior research limitations, a modified network of YOLOv5 is used in this study to detect and classify breast tumors. Our research is conducted using publicly available datasets Curated Breast Imaging Subset of DDSM (CBIS-DDSM). The first step is to perform preprocessing, which includes image enhancing techniques and the removal of pectoral muscles and labels. The dataset is then annotated, augmented, and divided into 60% for training, 30% for validation, and 10% for testing. The experiment is then performed using a batch size of 8, a learning rate of 0.01, a momentum of 0.843, and an epoch value of 300. To evaluate the performance of our proposed model, our proposed model is compared with YOLOv3 and faster RCNN. The results show that our proposed model performs better than YOLOv3 and faster RCNN with 96% mAP, 93.50% MCC value, 96.50% accuracy, 0.04 FPR, and 0.03 FNR value. The results show that our suggested model successfully identifies and classifies breast tumors while also overcoming previous research limitations by lowering the FPR and FNR and boosting the MCC value.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752232 | PMC |
http://dx.doi.org/10.1155/2022/1359019 | DOI Listing |
J Pediatr Health Care
January 2025
Behavioral and mental health (BMH) issues are increasing in adolescents as shortages of primary care and BMH providers are also rising. The healthcare burden has fallen especially hard on primary care providers (PCPs), who are showing increasing signs of burnout and making plans to reduce their work hours or leave the profession altogether. These factors impede their ability to be the first line of defense in providing emotional support to children and families.
View Article and Find Full Text PDFArch Toxicol
January 2025
Cosmetics Europe, Brussels, Belgium.
Grouping of chemicals has been proposed as a strategy to speed up the screening and identification of potential substances of concern among the broad chemical universe under REACH. Such grouping is usually based on shared structural features and should only be used for the prioritization objectives. However, additional considerations (as well as structural similarity) are needed, e.
View Article and Find Full Text PDFHum Genet
January 2025
Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan.
There are hundreds of rare syndromic diseases involving hearing loss, many of which are not targeted for clinical genetic testing. We systematically explored the genetic causes of undiagnosed syndromic hearing loss using a combination of whole exome sequencing (WES) and a phenotype similarity search system called PubCaseFinder. Fifty-five families with syndromic hearing loss of unknown cause were analyzed using WES after prescreening of several deafness genes depending on patient clinical features.
View Article and Find Full Text PDFSci Rep
January 2025
North Carolina School of Science and Mathematics, Durham, NC, 27705, USA.
Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for System Dynamics, University of Stuttgart, Waldburgstr. 19, 70563, Stuttgart, Germany.
Including sensor information in medical interventions aims to support surgeons to decide on subsequent action steps by characterizing tissue intraoperatively. With bladder cancer, an important issue is tumor recurrence because of failure to remove the entire tumor. Impedance measurements can help to classify bladder tissue and give the surgeons an indication on how much tissue to remove.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!