MicroRNAs (miRNAs) participate in the comprehensive biological process of several cancer types. In our former study, we found that hsa-microRNA- (miR-)28-5p was downregulated, but tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activating protein zeta (14-3-3 or YWHAZ) was upregulated in diffuse large B-cell lymphoma (DLBCL) tissues. We predicted that YWHAZ was a target gene for hsa-miR- 28-5p using bioinformatics analysis. Our goal was to reveal the role of hsa-miR-28-5p in DLBCL. YWHAZ was tested by immunohistochemistry (IHC) in formalin-fixed paraffin-embedded (FFPE) tissues of 137 DLBCL tissues, and the expression of hsa-miR-28-5p and YWHAZ was examined by quantitative real-time polymerase chain reaction (qRT-PCR) in 15 fresh and frozen DLBCL tissues. To study the functional roles of the downregulated hsa-miR-28-5p in DLBCL, a Cell Counting Kit-8 assay was conducted to estimate cell proliferation. Transient transfection of miRNA mimics was performed to overexpress hsa-miR-28-5p, and flow cytometry was performed to examine cell apoptosis and cell cycle progression. A dual-luciferase reporter assay was employed to explore the relationship between hsa-miR-28-5p and YWHAZ. Western blotting and qRT-PCR were used to investigate the function of hsa-miR-28-5p in YWHAZ expression. hsa-miR-28-5p was found to be significantly downregulated in DLBCL tissues and cell lines. Functional studies showed that hsa-miR-28-5p overexpression inhibited cell viability and proliferation, and YWHAZ was predicted to be a target of hsa-miR-28-5p. Dual-luciferase reporter assay, Western blotting, and qRT-PCR verified that hsa-miR-28-5p negatively regulated YWHAZ expression by directly targeting its 3' untranslated regions in DLBCL cells. hsa-miR-28-5p may suppress the growth of DLBCL cells by inhibiting YWHAZ expression. These findings could provide novel targets for DLBCL diagnosis and therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752235PMC
http://dx.doi.org/10.1155/2022/4605329DOI Listing

Publication Analysis

Top Keywords

dlbcl tissues
16
hsa-mir-28-5p ywhaz
12
ywhaz expression
12
hsa-mir-28-5p
11
ywhaz
9
dlbcl
9
diffuse large
8
large b-cell
8
b-cell lymphoma
8
cell proliferation
8

Similar Publications

Background: Clonal mature B-cell lymphoproliferative disorders (B-LPDs) are a heterogeneous group of neoplasia characterized by the proliferation of mature B lymphocytes in the peripheral blood, bone marrow and/or lymphoid tissues. B-LPDs classification into different subtypes and their diagnosis is based on a multiparametric approach. However, accurate diagnosis may be challenging, especially in cases of ambiguous interpretation.

View Article and Find Full Text PDF

Circulating tumor DNA (ctDNA) levels can help predict outcomes in diffuse large B-cell lymphoma (DLBCL), but its integration with DLBCL molecular clusters remains unexplored. Using the LymphGen tool in 77 DLBCL with both ctDNA and tissue biopsy, a 95.8% concordance rate in molecular cluster assignment was observed, showing the reproducibility of molecular clustering on ctDNA.

View Article and Find Full Text PDF

Primary cutaneous B-cell lymphoma (PCBCL) has three subtypes, among those, the leg type variant is the rarest with the highest rates of relapse and recurrence making it an intriguing focus for researchers. Nevertheless, prior to framing a diagnosis solely based on the lesion's location, it is prudent to reconsider whether it is genuinely a primary cutaneous B-cell lymphoma (PCBCL) or if it aligns more closely with the more prevalent lymphoma variants such as diffuse large B-cell lymphoma (DLBCL) with cutaneous involvement. We are reporting a case of an 85-year-old African American lady, who presented with unilateral left leg DLBCL with cutaneous involvement.

View Article and Find Full Text PDF

Background: Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adult, characterized by uncontrolled cell proliferation and strong aggressiveness. Previous studies have found that cyclin-dependent kinase 1(CDK1) are related to tumor growth and metastasis. However, the role of CDK1 in DLBCL is exclusive.

View Article and Find Full Text PDF

The advent of spatial transcriptomics and spatial proteomics have enabled profound insights into tissue organization to provide systems-level understanding of diseases. Both technologies currently remain largely independent, and emerging same slide spatial multi-omics approaches are generally limited in plex, spatial resolution, and analytical approaches. We introduce IN-situ DEtailed Phenotyping To High-resolution transcriptomics (IN-DEPTH), a streamlined and resource-effective approach compatible with various spatial platforms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!