The fundamental role of epigenetic regulatory mechanisms involved in neuroplasticity and adaptive responses to traumatic brain injury (TBI) is gaining increased recognition. TBI-induced neurodegeneration is associated with several changes in the expression-activity of various epigenetic regulatory enzymes, including histone deacetylases (HDACs). In this study, PET/CT with 6-([F]trifluoroacetamido)-1- hexanoicanilide ([F]TFAHA) to image spatial and temporal dynamics of HDACs class IIa expression-activity in brains of adult rats subjected to a weight drop model of diffuse, non-penetrating, mild traumatic brain injury (mTBI). The mTBI model was validated by histopathological and immunohistochemical analyses of brain tissue sections for localization and magnitude of expression of heat-shock protein-70 kDa (HSP70), amyloid precursor protein (APP), cannabinoid receptor-2 (CB2), ionized calcium-binding adapter protein-1 (IBA1), histone deacetylase-4 and -5 (HDAC4 and HDAC5). In comparison to baseline, the expression-activities of HDAC4 and HDAC5 were downregulated in the hippocampus, nucleus accumbens, peri-3rd ventricular part of the thalamus, and substantia nigra at 1-3 days post mTBI, and remained low at 7-8 days post mTBI. Reduced levels of HDAC4 and HDAC5 expression observed in neurons of these brain regions post mTBI were associated with the reduced nuclear and neuropil levels of HDAC4 and HDAC5 with the shift to perinuclear localization of these enzymes. These results support the rationale for the development of therapeutic strategies to upregulate expression-activity of HDACs class IIa post-TBI. PET/CT (MRI) with [F]TFAHA can facilitate the development and clinical translation of unique therapeutic approaches to upregulate the expression and activity of HDACs class IIa enzymes in the brain after TBI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629393PMC
http://dx.doi.org/10.1038/s41380-021-01369-7DOI Listing

Publication Analysis

Top Keywords

hdacs class
16
class iia
16
hdac4 hdac5
16
traumatic brain
12
brain injury
12
post mtbi
12
spatial temporal
8
temporal dynamics
8
dynamics hdacs
8
mild traumatic
8

Similar Publications

Development of the First-in-Class FEM1B-Recruiting Histone Deacetylase Degraders.

J Med Chem

January 2025

Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn institution, An der Immenburg 4, Bonn 53121, Germany.

Targeted protein degradation (TPD) represents a promising alternative to conventional occupancy-driven protein inhibition. Despite the existence of more than 600 E3 ligases in the human proteome, so far only a few have been utilized for TPD of histone deacetylases (HDACs), which represent important epigenetic anticancer drug targets. In this study, we disclose the first-in-class Fem-1 homologue B (FEM1B)-recruiting HDAC degraders.

View Article and Find Full Text PDF

Background: Radiotherapy is the primary treatment modality for most head and neck cancers (HNCs). Despite the addition of chemotherapy to radiotherapy to enhance its tumoricidal effects, almost a third of HNC patients suffer from locoregional relapses. Salvage therapy options for such recurrences are limited and often suboptimal, partly owing to divergent tumor and microenvironmental factors underpinning radioresistance.

View Article and Find Full Text PDF
Article Synopsis
  • Epigenetic processes, particularly histone modification by HDACs, are crucial in cancer development, making HDACs important targets for cancer therapies.
  • The challenge with most HDAC inhibitors is their non-selective nature and drug resistance, prompting a search for more effective and isoform-selective options.
  • Alectinib has been identified through virtual screening as a potential HDAC1 inhibitor with better efficiency and stability, suggesting its promise for therapy in HDAC1-related cancers, pending further validation.
View Article and Find Full Text PDF

Unraveling the mechanism of microRNA-134 in colon cancer progression: Targeting KRAS and PIK3CA for cell cycle control and histone deacetylase regulation.

Exp Cell Res

January 2025

Medical Biotechnology lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Rajiv Gandhi Salai (OMR), Kelambakkam, Chennai, Tamil Nadu, 603 103, India. Electronic address:

Colon cancer is the leading cause of cancer-related deaths worldwide. MicroRNAs (miRNAs) are key regulators of gene expression, often dysregulated in colon cancer. This study aims to elucidate the therapeutic role of miR-134-5p as a tumor suppressor miRNA in colon cancer cells.

View Article and Find Full Text PDF

Synthetic approaches and clinical applications of representative HDAC inhibitors for cancer therapy: A review.

Eur J Med Chem

February 2025

Department of Orthopaedics, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, 366 Taihu Road, Taizhou, Jiangsu, China. Electronic address:

Histone deacetylase (HDAC) inhibitors are a promising class of epigenetic modulators in cancer therapy. This review provides a comprehensive analysis of recent synthetic strategies and clinical applications of key HDAC inhibitors for oncology. HDACs play a critical role in modulating chromatin structure and gene expression by removing acetyl groups from histone proteins, leading to transcriptional repression of tumor suppressor genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!